Text Generation
PyTorch
Safetensors
English
openlm
mamba
linear
Eval Results
mamba-7b-rw / README.md
sedrickkeh's picture
Update README.md
f945251 verified
|
raw
history blame
6.74 kB
---
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
pipeline_tag: text-generation
library_name: openlm
tags:
- mamba
- linear
language:
- en
model-index:
- name: mamba-7b
results:
- task:
type: text-generation
dataset:
type: MMLU
name: MMLU
metrics:
- name: accuracy
type: accuracy
value: 33.3
verified: false
- task:
type: text-generation
dataset:
type: HellaSwag
name: HellaSwag
metrics:
- name: accuracy
type: accuracy
value: 77.9
verified: false
- task:
type: text-generation
dataset:
type: PIQA
name: PIQA
metrics:
- name: accuracy
type: accuracy
value: 81.0
verified: false
- task:
type: text-generation
dataset:
type: Winogrande
name: Winogrande
metrics:
- name: accuracy
type: accuracy
value: 71.8
verified: false
- task:
type: text-generation
dataset:
type: ai2_arc
name: ARC-E
metrics:
- name: accuracy
type: accuracy
value: 77.5
verified: false
- task:
type: text-generation
dataset:
type: ai2_arc
name: ARC-C
metrics:
- name: accuracy
type: accuracy
value: 46.7
verified: false
---
# Mamba-7B
This is a 7B parameter model with the [Mamba](https://arxiv.org/abs/2312.00752) architecture, trained on multiple epochs (1.2T tokens) of the [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) dataset.
Mamba is a state-space model that does not use self-attention unlike the standard transformer architecture. It has shown strong performance on various natural language benchmarks. To date, the largest publicly released pure-Mamba pretrain is [Mamba-2.8B](https://huggingface.co/state-spaces/mamba-2.8b).
We follow their training recipe and release our version of Mamba-7B.
## Model Details
- **Developed by**: [Toyota Research Institute](https://www.tri.global/our-work/robotics)
- **Model Type**: This is an auto-regressive language model based on the [Mamba](https://arxiv.org/abs/2312.00752) architecture.
- **Dataset**: Trained on 1.2T tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- **Tokenizer**: `EleutherAI/gpt-neox-20b`
- **Library**: [OpenLM](https://github.com/mlfoundations/open_lm/)
- **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
| Parameters | Hidden Size | Layers | Vocab Size | Sequence Length |
|------------|-------------|--------| ---------- | --------------- |
| 7B | 4096 | 64 | 50432 | 2048 |
## Training Details
- Mamba-7B was trained using AWS SageMaker on 128 H100 80GB GPUs.
- Training began in March 2024 and lasted three weeks.
| **Hyperparameter** | **Value** |
|--------------------|------------|
| Precision | `bfloat16` |
| Optimizer | AdamW |
| Learning rate | 3e-4 |
| LR cooldown end | 1e-5 |
| QK-norm | False |
| Warmup steps | 2000 |
| Z-loss | 1e-4 |
| Batch size | 2M |
## Usage
This model was trained using [OpenLM](https://github.com/mlfoundations/open_lm/). The weights have been converted to be compatible with HuggingFace.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tri-ml/mamba-7b-rw")
model = AutoModelForCausalLM.from_pretrained("tri-ml/mamba-7b-rw")
inputs = tokenizer(["The Toyota Supra"], return_tensors="pt")
gen_kwargs = {"max_new_tokens": 50, "top_p": 0.8, "temperature": 0.8, "do_sample": True, "repetition_penalty": 1.1}
output = model.generate(inputs['input_ids'], **gen_kwargs)
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
print(output)
# The Toyota Supra is a sports car that has been in production since 1978. The car was discontinued in 2002, but it has recently been revived and will be available again in 2020. The Supra has always been known for its powerful engines and agile handling.
```
## Performance Evaluation
Our evaluations were done using the [Eleuther LM Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) repo.
Below we report the performance of Mamba 7B compared to other base models.
<style>
.evalTable th { background: white; }
.evalTable tr:nth-child(1) { background: #f3f3f3; }
.evalTable tr:nth-child(2) { background: #f3f3f3; }
.evalTable tr:nth-child(7) { background: #f3f3f3; }
</style>
<div class="evalTable">
| | HellaSwag | PIQA | Winogrande | ARC-E | ARC-C | MMLU (5-shot) |
| ----------------- | ------------- | -------- | -------------- | --------- | --------- | ---------------- |
| Mamba-1.4B | 59.0 | 73.9 | 61.4 | 65.5 | 32.9 | 25.2 |
| Mamba-2.8B | 71.0 | 78.1 | 65.9 | 68.2 | 41.7 | 26.2 |
| RWKV5-1.7T-7B | 73.0 | 78.6 | 72.9 | 75.8 | 45.6 | 34.9 |
| Llama2-7B | 76.0 | 79.1 | 69.1 | 76.3 | 46.3 | 45.9 |
| Gemma-7B | 80.7 | 81.9 | 73.7 | 81.1 | 53.2 | 62.9 |
| Mistral-7B | 81.0 | 82.1 | 74.0 | 80.9 | 53.8 | 62.4 |
| **Mamba-7B** | 77.9 | 81.0 | 71.8 | 77.5 | 46.7 | 33.3 |
</div>
## How to Cite
If you use this model, please cite our paper on Linearizing Large Language Models. (Coming soon!)
```
@article{Mercat2024Linearizing,
title={Linearizing Large Language Models},
author={Jean Mercat and Igor Vasiljevic and Sedrick Keh and Kushal Arora and Achal Dave and Adrien Gaidon and Thomas Kollar},
journal={ArXiv},
year={2024},
volume={},
}
```
## Citations
Mamba
```
@article{mamba,
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
author={Gu, Albert and Dao, Tri},
journal={arXiv preprint arXiv:2312.00752},
year={2023}
}
```
OpenLM
```
@misc{open_lm,
author = {Gururangan, Suchin and Wortsman, Mitchell and Gadre, Samir Yitzhak and Dave, Achal and Kilian, Maciej and Shi, Weijia and Mercat, Jean and Smyrnis, Georgios and Ilharco, Gabriel and Jordan, Matt and Heckel, Reinhard and Dimakis, Alex and Farhadi, Ali and Shankar, Vaishaal and Schmidt, Ludwig},
title = {{open_lm}: a minimal but performative language modeling (LM) repository},
year = {2023},
note = {GitHub repository},
url = {https://github.com/mlfoundations/open_lm/}
}
```