Text Generation
PyTorch
Safetensors
English
openlm
mamba
linear
Eval Results
File size: 6,740 Bytes
189b8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
accd6ba
189b8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8037865
189b8e7
 
 
 
 
 
 
 
 
 
 
 
 
443ad2e
189b8e7
 
 
 
4678449
189b8e7
4678449
 
189b8e7
 
 
4678449
189b8e7
 
 
 
 
 
 
 
 
 
 
 
f945251
189b8e7
 
 
 
9b2853e
 
 
 
 
17f05b8
9b2853e
 
 
 
189b8e7
 
 
 
 
7954c1d
189b8e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
pipeline_tag: text-generation
library_name: openlm
tags:
- mamba
- linear
language:
- en
model-index:
- name: mamba-7b
  results:
  - task:
      type: text-generation
    dataset:
      type: MMLU
      name: MMLU
    metrics:
    - name: accuracy
      type: accuracy
      value: 33.3
      verified: false
  - task:
      type: text-generation
    dataset:
      type: HellaSwag
      name: HellaSwag
    metrics:
    - name: accuracy
      type: accuracy
      value: 77.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: PIQA
      name: PIQA
    metrics:
    - name: accuracy
      type: accuracy
      value: 81.0
      verified: false
  - task:
      type: text-generation
    dataset:
      type: Winogrande
      name: Winogrande
    metrics:
    - name: accuracy
      type: accuracy
      value: 71.8
      verified: false
  - task:
      type: text-generation
    dataset:
      type: ai2_arc
      name: ARC-E
    metrics:
    - name: accuracy
      type: accuracy
      value: 77.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: ai2_arc
      name: ARC-C
    metrics:
    - name: accuracy
      type: accuracy
      value: 46.7
      verified: false
---

# Mamba-7B
This is a 7B parameter model with the [Mamba](https://arxiv.org/abs/2312.00752) architecture, trained on multiple epochs (1.2T tokens) of the [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) dataset.
Mamba is a state-space model that does not use self-attention unlike the standard transformer architecture. It has shown strong performance on various natural language benchmarks. To date, the largest publicly released pure-Mamba pretrain is [Mamba-2.8B](https://huggingface.co/state-spaces/mamba-2.8b). 
We follow their training recipe and release our version of Mamba-7B.

## Model Details
- **Developed by**: [Toyota Research Institute](https://www.tri.global/our-work/robotics)
- **Model Type**: This is an auto-regressive language model based on the [Mamba](https://arxiv.org/abs/2312.00752) architecture.
- **Dataset**: Trained on 1.2T tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) 
- **Tokenizer**: `EleutherAI/gpt-neox-20b`
- **Library**: [OpenLM](https://github.com/mlfoundations/open_lm/)
- **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
 
| Parameters | Hidden Size | Layers | Vocab Size | Sequence Length | 
|------------|-------------|--------| ---------- | --------------- |
| 7B         | 4096        | 64     | 50432      | 2048            |

## Training Details
- Mamba-7B was trained using AWS SageMaker on 128 H100 80GB GPUs.
- Training began in March 2024 and lasted three weeks.
| **Hyperparameter** | **Value**  | 
|--------------------|------------|
| Precision          | `bfloat16` |
| Optimizer          | AdamW      |
| Learning rate      | 3e-4       |
| LR cooldown end    | 1e-5       |
| QK-norm            | False      |
| Warmup steps       | 2000       |
| Z-loss             | 1e-4       |
| Batch size         | 2M         |


## Usage
This model was trained using [OpenLM](https://github.com/mlfoundations/open_lm/). The weights have been converted to be compatible with HuggingFace.

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tri-ml/mamba-7b-rw")
model = AutoModelForCausalLM.from_pretrained("tri-ml/mamba-7b-rw")

inputs = tokenizer(["The Toyota Supra"], return_tensors="pt")
gen_kwargs = {"max_new_tokens": 50, "top_p": 0.8, "temperature": 0.8, "do_sample": True, "repetition_penalty": 1.1}
output = model.generate(inputs['input_ids'], **gen_kwargs)
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
print(output)
# The Toyota Supra is a sports car that has been in production since 1978. The car was discontinued in 2002, but it has recently been revived and will be available again in 2020. The Supra has always been known for its powerful engines and agile handling. 
```


## Performance Evaluation
Our evaluations were done using the [Eleuther LM Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) repo.

Below we report the performance of Mamba 7B compared to other base models.

<style>
    .evalTable th { background: white; }
    .evalTable tr:nth-child(1) { background: #f3f3f3; }
    .evalTable tr:nth-child(2) { background: #f3f3f3; }
    .evalTable tr:nth-child(7) { background: #f3f3f3; }
</style>

<div class="evalTable">


|                   | HellaSwag     | PIQA     | Winogrande     | ARC-E     | ARC-C     | MMLU (5-shot)    |
| ----------------- | ------------- | -------- | -------------- | --------- | --------- | ---------------- |
| Mamba-1.4B        | 59.0          | 73.9     | 61.4           | 65.5      | 32.9      | 25.2             |
| Mamba-2.8B        | 71.0          | 78.1     | 65.9           | 68.2      | 41.7      | 26.2             |
| RWKV5-1.7T-7B     | 73.0          | 78.6     | 72.9           | 75.8      | 45.6      | 34.9             |
| Llama2-7B         | 76.0          | 79.1     | 69.1           | 76.3      | 46.3      | 45.9             |
| Gemma-7B          | 80.7          | 81.9     | 73.7           | 81.1      | 53.2      | 62.9             |
| Mistral-7B        | 81.0          | 82.1     | 74.0           | 80.9      | 53.8      | 62.4             |
| **Mamba-7B**      | 77.9          | 81.0     | 71.8           | 77.5      | 46.7      | 33.3             |

</div>


## How to Cite
If you use this model, please cite our paper on Linearizing Large Language Models. (Coming soon!)
```
@article{Mercat2024Linearizing,
  title={Linearizing Large Language Models},
  author={Jean Mercat and Igor Vasiljevic and Sedrick Keh and Kushal Arora and Achal Dave and Adrien Gaidon and Thomas Kollar},
  journal={ArXiv},
  year={2024},
  volume={},
}
```

## Citations
Mamba
```
@article{mamba,
  title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
  author={Gu, Albert and Dao, Tri},
  journal={arXiv preprint arXiv:2312.00752},
  year={2023}
}
```
OpenLM
```
@misc{open_lm,
  author = {Gururangan, Suchin and Wortsman, Mitchell and Gadre, Samir Yitzhak and Dave, Achal and Kilian, Maciej and Shi, Weijia and Mercat, Jean and Smyrnis, Georgios and Ilharco, Gabriel and Jordan, Matt and Heckel, Reinhard and Dimakis, Alex and Farhadi, Ali and Shankar, Vaishaal and Schmidt, Ludwig},
  title = {{open_lm}:  a minimal but performative language modeling (LM) repository},
  year = {2023},
  note = {GitHub repository},
  url = {https://github.com/mlfoundations/open_lm/}
}
```