Fixed the incompatibility with transformers-4.43.3

#6
Files changed (1) hide show
  1. modeling_cogvlm.py +835 -834
modeling_cogvlm.py CHANGED
@@ -1,834 +1,835 @@
1
- """largely copy from llama and adapt for cogvlm"""
2
- import warnings
3
- from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
4
-
5
- import math
6
- import torch
7
- from torch import nn
8
- from torch.nn import functional as F
9
- from torch.nn import CrossEntropyLoss
10
- from torchvision import transforms
11
- from einops import rearrange
12
-
13
- from transformers import PreTrainedModel, PreTrainedTokenizer
14
- from transformers.utils.logging import get_logger
15
- from transformers.activations import ACT2FN
16
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
17
-
18
- from .configuration_cogvlm import CogVLMConfig
19
- from .visual import EVA2CLIPModel
20
-
21
- if TYPE_CHECKING:
22
- from transformers.utils import ModelOutput
23
-
24
- logger = get_logger(__name__)
25
-
26
- LANGUAGE_TOKEN_TYPE = 0
27
- VISION_TOKEN_TYPE = 1
28
-
29
-
30
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
31
- def _make_causal_mask(
32
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
33
- ):
34
- """
35
- Make causal mask used for bi-directional self-attention.
36
- """
37
- bsz, tgt_len = input_ids_shape
38
- mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
39
- mask_cond = torch.arange(mask.size(-1), device=device)
40
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
41
- mask = mask.to(dtype)
42
-
43
- if past_key_values_length > 0:
44
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
45
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
46
-
47
-
48
- # Copied from transformers.models.bart.modeling_bart._expand_mask
49
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
50
- """
51
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
52
- """
53
- bsz, src_len = mask.size()
54
- tgt_len = tgt_len if tgt_len is not None else src_len
55
-
56
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
57
-
58
- inverted_mask = 1.0 - expanded_mask
59
-
60
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
61
-
62
-
63
- class RMSNorm(nn.Module):
64
- def __init__(self, hidden_size, eps=1e-6):
65
- super().__init__()
66
- self.weight = nn.Parameter(torch.ones(hidden_size))
67
- self.variance_epsilon = eps
68
-
69
- def forward(self, hidden_states):
70
- input_dtype = hidden_states.dtype
71
- hidden_states = hidden_states.to(torch.float32)
72
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
73
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
74
- return (self.weight * hidden_states).to(input_dtype)
75
-
76
-
77
- class MLP(nn.Module):
78
- def __init__(self, config):
79
- super().__init__()
80
- self.hidden_size = config.hidden_size
81
- self.intermediate_size = config.intermediate_size
82
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
83
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
84
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
85
- self.act_fn = ACT2FN[config.hidden_act]
86
-
87
- def forward(self, x):
88
- down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
89
- return down_proj
90
-
91
-
92
- def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
93
- vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
94
- vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
95
- language_token_mask = ~vision_token_mask
96
- return vision_token_mask, language_token_mask
97
-
98
-
99
- class VisionExpertMLP(nn.Module):
100
- def __init__(self, config):
101
- super().__init__()
102
- self.language_mlp = MLP(config)
103
- self.vision_mlp = MLP(config)
104
-
105
- def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
106
- output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
107
- vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
108
- output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
109
- output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
110
- return output
111
-
112
-
113
- def attention_fn(
114
- query_layer: "torch.tensor(B, H, L, HD)",
115
- key_layer: "torch.tensor(B, H, L, HD)",
116
- value_layer: "torch.tensor(B, H, L, HD)",
117
- attention_mask: "torch.tensor(B, H, L, HD)",
118
- *,
119
- scaling_attention_score: bool = True,
120
- attention_dropout: nn.Module = None
121
- ):
122
- attention_mask_bool = (attention_mask == 0)
123
- is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
124
- is_full = (attention_mask_bool > 0).all()
125
- if not (int(torch.__version__.split('.')[0]) >= 2):
126
- warnings.warn("It's recommended to use torch2.0 or higher.")
127
- if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
128
- dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
129
- return torch.nn.functional.scaled_dot_product_attention(
130
- query_layer, key_layer, value_layer,
131
- attn_mask=None,
132
- dropout_p=dropout_p,
133
- is_causal=not is_full
134
- )
135
- else:
136
- if scaling_attention_score:
137
- query_layer = query_layer / math.sqrt(query_layer.shape[-1])
138
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
139
- attention_scores = attention_scores + attention_mask
140
- attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
141
- if attention_dropout is not None:
142
- attention_scores = attention_dropout(attention_scores)
143
- context_layer = torch.matmul(attention_scores, value_layer)
144
- return context_layer
145
-
146
-
147
- class RotaryEmbedding(torch.nn.Module):
148
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
- super().__init__()
150
-
151
- self.dim = dim
152
- self.max_position_embeddings = max_position_embeddings
153
- self.base = base
154
- inv_freq = self._compute_inv_freq(device)
155
- self.register_buffer("inv_freq", inv_freq)
156
- self.max_seq_len_cached = 0
157
-
158
- def _compute_inv_freq(self, device=None):
159
- return 1.0 / (
160
- self.base
161
- ** (torch.arange(0, self.dim, 2, device=device) / self.dim)
162
- )
163
-
164
- def _set_cos_sin_cache(self, seq_len, device, dtype):
165
- self.max_seq_len_cached = seq_len
166
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
167
-
168
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
169
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
170
- emb = torch.cat((freqs, freqs), dim=-1)
171
- self.register_buffer("cos_cached", emb.cos()[:, None, :].to(dtype), persistent=False)
172
- self.register_buffer("sin_cached", emb.sin()[:, None, :].to(dtype), persistent=False)
173
-
174
- def forward(self, x, seq_len):
175
- # x: [bs, num_attention_heads, seq_len, head_size]
176
- if seq_len > self.max_seq_len_cached:
177
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
178
-
179
- return (
180
- self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
181
- self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
182
- )
183
-
184
-
185
- def rotate_half(x):
186
- x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
187
- return torch.cat((-x2, x1), dim=x1.ndim - 1)
188
-
189
-
190
- def apply_rotary_pos_emb_index_bhs(q, k, cos, sin, position_id):
191
- # batch_size, num_head, seq_len, hidden_size
192
- cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(1), \
193
- F.embedding(position_id, sin.squeeze(1)).unsqueeze(1)
194
- q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
195
- return q, k
196
-
197
-
198
- class VisionExpertAttention(nn.Module):
199
- def __init__(self, config):
200
- super().__init__()
201
- self.config = config
202
- self.hidden_size = config.hidden_size
203
- self.num_heads = config.num_attention_heads
204
- self.head_dim = self.hidden_size // self.num_heads
205
- self.max_position_embeddings = config.max_position_embeddings
206
-
207
- self.rotary_emb = RotaryEmbedding(self.head_dim)
208
- self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
209
- self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
210
- self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
211
- self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
212
-
213
- def _transpose_for_scores(self, tensor):
214
- """Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
215
- new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.head_dim)
216
- tensor = tensor.view(*new_tensor_shape)
217
- return tensor.permute(0, 2, 1, 3)
218
-
219
- def forward(
220
- self,
221
- hidden_states: torch.Tensor,
222
- token_type_ids: torch.LongTensor,
223
- position_ids: torch.LongTensor,
224
- attention_mask: Optional[torch.Tensor] = None,
225
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
226
- output_attentions: bool = False,
227
- use_cache: bool = False,
228
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
229
- bsz, q_len, _ = hidden_states.size()
230
- vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
231
-
232
- shape = list(hidden_states.shape)
233
- shape[-1] = shape[-1] * 3
234
- mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
235
- mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
236
- mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
237
-
238
- query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
239
- query_states = self._transpose_for_scores(query_states) # B, H, L, HD
240
- key_states = self._transpose_for_scores(key_states) # B, H, L, HD
241
- value_states = self._transpose_for_scores(value_states) # B, H, L, HD
242
-
243
- kv_seq_len = key_states.shape[-2]
244
- if past_key_value is not None:
245
- kv_seq_len += past_key_value[0].shape[-2]
246
- cos, sin = self.rotary_emb(value_states, seq_len=position_ids.max() + 1)
247
- query_states, key_states = apply_rotary_pos_emb_index_bhs(query_states, key_states, cos, sin, position_ids)
248
-
249
- if past_key_value is not None:
250
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
251
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
252
-
253
- past_key_value = (key_states, value_states) if use_cache else None
254
-
255
- context_layer = attention_fn(
256
- query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
257
- scaling_attention_score=True, attention_dropout=None)
258
- if context_layer.size() != (bsz, self.num_heads, q_len, self.head_dim):
259
- raise ValueError(
260
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
261
- f" {context_layer.size()}"
262
- )
263
- context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
264
-
265
- attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
266
- attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
267
- attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
268
-
269
- if output_attentions:
270
- warnings.warn("output_attentions is not implemented.")
271
-
272
- return attn_output, None, past_key_value
273
-
274
-
275
- class CogVLMDecoderLayer(nn.Module):
276
- def __init__(self, config):
277
- super().__init__()
278
- self.hidden_size = config.hidden_size
279
- self.self_attn = VisionExpertAttention(config=config)
280
- self.mlp = VisionExpertMLP(config)
281
- self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
282
- self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
283
-
284
- def forward(
285
- self,
286
- hidden_states: torch.Tensor,
287
- token_type_ids: torch.LongTensor,
288
- position_ids: torch.LongTensor,
289
- attention_mask: Optional[torch.Tensor] = None,
290
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
291
- output_attentions: Optional[bool] = False,
292
- use_cache: Optional[bool] = False,
293
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
294
- residual = hidden_states
295
-
296
- hidden_states = self.input_layernorm(hidden_states)
297
-
298
- # Self Attention
299
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
300
- hidden_states=hidden_states,
301
- token_type_ids=token_type_ids,
302
- position_ids=position_ids,
303
- attention_mask=attention_mask,
304
- past_key_value=past_key_value,
305
- output_attentions=output_attentions,
306
- use_cache=use_cache,
307
- )
308
- hidden_states = residual + hidden_states
309
-
310
- # Fully Connected
311
- residual = hidden_states
312
- hidden_states = self.post_attention_layernorm(hidden_states)
313
- hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids)
314
- hidden_states = residual + hidden_states
315
-
316
- outputs = (hidden_states,)
317
-
318
- if output_attentions:
319
- outputs += (self_attn_weights,)
320
-
321
- if use_cache:
322
- outputs += (present_key_value,)
323
-
324
- return outputs # type: ignore
325
-
326
-
327
- class CogVLMPreTrainedModel(PreTrainedModel):
328
- config_class = CogVLMConfig
329
- base_model_prefix = "model"
330
- supports_gradient_checkpointing = False
331
- _no_split_modules = ["CogVLMDecoderLayer", "TransformerLayer"]
332
- _skip_keys_device_placement = "past_key_values"
333
-
334
- def _init_weights(self, module):
335
- std = self.config.initializer_range
336
- if isinstance(module, nn.Linear):
337
- module.weight.data.normal_(mean=0.0, std=std)
338
- if module.bias is not None:
339
- module.bias.data.zero_()
340
- elif isinstance(module, nn.Embedding):
341
- module.weight.data.normal_(mean=0.0, std=std)
342
- if module.padding_idx is not None:
343
- module.weight.data[module.padding_idx].zero_()
344
-
345
-
346
- def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
347
- if images_list is None or len(images_list) == 0:
348
- return True
349
- for image_list in images_list:
350
- if len(image_list):
351
- return False
352
- return True
353
-
354
-
355
- def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
356
- if attention_mask is not None:
357
- tmp = x.clone()
358
- tmp[~(attention_mask.bool())] = -1
359
- else:
360
- tmp = x.clone()
361
- # image boi eoi token as LANGUAGE_TOKEN_TYPE
362
- is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
363
- is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
364
- is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
365
- is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
366
- is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
367
- tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
368
- # final position ids
369
- y = torch.zeros_like(x, dtype=torch.long)
370
- y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
371
- y = y.cumsum(dim=-1)
372
- return y
373
-
374
-
375
- class CogVLMModel(CogVLMPreTrainedModel):
376
- def __init__(self, config):
377
- super().__init__(config)
378
- self.padding_idx = config.pad_token_id
379
- self.vocab_size = config.vocab_size
380
-
381
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
382
- self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
383
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
384
-
385
- self.vision = EVA2CLIPModel(config)
386
-
387
- self.gradient_checkpointing = False
388
- # Initialize weights and apply final processing
389
- self.post_init()
390
-
391
- def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor:
392
- images_list, images = images, []
393
-
394
- images = []
395
- for image_list in images_list:
396
- for image in image_list:
397
- images.append(image)
398
-
399
- images = torch.stack(images)
400
- images_features = self.vision(images)
401
- return images_features
402
-
403
- def forward(
404
- self,
405
- input_ids: torch.LongTensor = None,
406
- images: List[List[torch.Tensor]] = None,
407
- token_type_ids: Optional[torch.LongTensor] = None,
408
- attention_mask: Optional[torch.Tensor] = None,
409
- position_ids: Optional[torch.LongTensor] = None,
410
- past_key_values: Optional[List[torch.FloatTensor]] = None,
411
- inputs_embeds: Optional[torch.FloatTensor] = None,
412
- use_cache: Optional[bool] = None,
413
- output_attentions: Optional[bool] = None,
414
- output_hidden_states: Optional[bool] = None,
415
- return_dict: Optional[bool] = None,
416
- ) -> Union[Tuple, BaseModelOutputWithPast]:
417
- """take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
418
-
419
- if past_key_values is not None:
420
- pass # generate mode with past_key_values. the image features are already mapped
421
- else:
422
- # not allow for inputs_embeds, because we want to process image feature
423
- assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
424
- if not is_empty(images): # multi-modality
425
- assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
426
- assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
427
- inputs_embeds = self.embed_tokens(input_ids)
428
- images_features = self.encode_images(images)
429
- images_features = rearrange(images_features, 'b n d -> (b n) d')
430
- images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
431
- inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
432
- else: # single-modality
433
- if token_type_ids is None:
434
- token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE
435
- assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
436
- inputs_embeds = self.embed_tokens(input_ids)
437
-
438
- if position_ids is None:
439
- position_ids = build_position_ids(token_type_ids, attention_mask)
440
- input_ids = None
441
-
442
- return self.llm_forward(
443
- input_ids=input_ids,
444
- token_type_ids=token_type_ids,
445
- attention_mask=attention_mask,
446
- position_ids=position_ids,
447
- past_key_values=past_key_values,
448
- inputs_embeds=inputs_embeds,
449
- use_cache=use_cache,
450
- output_attentions=output_attentions,
451
- output_hidden_states=output_hidden_states,
452
- return_dict=return_dict,
453
- )
454
-
455
- def llm_forward(
456
- self,
457
- input_ids: torch.LongTensor = None,
458
- token_type_ids: torch.LongTensor = None,
459
- attention_mask: Optional[torch.Tensor] = None,
460
- position_ids: Optional[torch.LongTensor] = None,
461
- past_key_values: Optional[List[torch.FloatTensor]] = None,
462
- inputs_embeds: Optional[torch.FloatTensor] = None,
463
- use_cache: Optional[bool] = None,
464
- output_attentions: Optional[bool] = None,
465
- output_hidden_states: Optional[bool] = None,
466
- return_dict: Optional[bool] = None,
467
- ) -> Union[Tuple, BaseModelOutputWithPast]:
468
- """largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
469
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
470
- output_hidden_states = (
471
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
472
- )
473
- use_cache = use_cache if use_cache is not None else self.config.use_cache
474
-
475
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
476
-
477
- # retrieve input_ids and inputs_embeds
478
- if input_ids is not None and inputs_embeds is not None:
479
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
480
- elif input_ids is not None:
481
- batch_size, seq_length = input_ids.shape
482
- elif inputs_embeds is not None:
483
- batch_size, seq_length, _ = inputs_embeds.shape
484
- else:
485
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
486
-
487
- seq_length_with_past = seq_length
488
- past_key_values_length = 0
489
-
490
- if past_key_values is not None:
491
- past_key_values_length = past_key_values[0][0].shape[2]
492
- seq_length_with_past = seq_length_with_past + past_key_values_length
493
-
494
- if position_ids is None:
495
- device = input_ids.device if input_ids is not None else inputs_embeds.device
496
- position_ids = torch.arange(
497
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
498
- )
499
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
500
- else:
501
- position_ids = position_ids.view(-1, seq_length).long()
502
-
503
- if inputs_embeds is None:
504
- inputs_embeds = self.embed_tokens(input_ids)
505
- # embed positions
506
- if attention_mask is None:
507
- attention_mask = torch.ones(
508
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
509
- )
510
- attention_mask = self._prepare_decoder_attention_mask(
511
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
512
- )
513
-
514
- hidden_states = inputs_embeds
515
-
516
- # decoder layers
517
- all_hidden_states = () if output_hidden_states else None
518
- all_self_attns = () if output_attentions else None
519
- next_decoder_cache = () if use_cache else None
520
-
521
- for idx, decoder_layer in enumerate(self.layers):
522
- if output_hidden_states:
523
- all_hidden_states += (hidden_states,)
524
-
525
- past_key_value = past_key_values[idx] if past_key_values is not None else None
526
- layer_outputs = decoder_layer(
527
- hidden_states,
528
- token_type_ids=token_type_ids,
529
- attention_mask=attention_mask,
530
- position_ids=position_ids,
531
- past_key_value=past_key_value,
532
- output_attentions=output_attentions,
533
- use_cache=use_cache,
534
- )
535
- hidden_states = layer_outputs[0]
536
-
537
- if use_cache:
538
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
539
-
540
- if output_attentions:
541
- all_self_attns += (layer_outputs[1],)
542
-
543
- hidden_states = self.norm(hidden_states)
544
-
545
- # add hidden states from the last decoder layer
546
- if output_hidden_states:
547
- all_hidden_states += (hidden_states,)
548
-
549
- next_cache = next_decoder_cache if use_cache else None
550
- if not return_dict:
551
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
552
- return BaseModelOutputWithPast(
553
- last_hidden_state=hidden_states,
554
- past_key_values=next_cache,
555
- hidden_states=all_hidden_states,
556
- attentions=all_self_attns,
557
- )
558
-
559
- def get_input_embeddings(self):
560
- return self.embed_tokens
561
-
562
- def set_input_embeddings(self, value):
563
- self.embed_tokens = value
564
-
565
- # noinspection PyMethodMayBeStatic
566
- # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
567
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
568
- # create causal mask
569
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
570
- combined_attention_mask = None
571
- if input_shape[-1] > 1:
572
- combined_attention_mask = _make_causal_mask(
573
- input_shape,
574
- inputs_embeds.dtype,
575
- device=inputs_embeds.device,
576
- past_key_values_length=past_key_values_length,
577
- )
578
-
579
- if attention_mask is not None:
580
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
581
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
582
- inputs_embeds.device
583
- )
584
- combined_attention_mask = (
585
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
586
- )
587
-
588
- return combined_attention_mask
589
-
590
-
591
- def _history_to_prompt(signal_type, history, query):
592
- if signal_type == 'base':
593
- return query
594
- elif signal_type == 'vqa':
595
- answer_format = 'Short answer:'
596
- elif signal_type == 'chat':
597
- answer_format = 'Answer:'
598
- else:
599
- assert False, f"Unknown signal type {signal_type}"
600
-
601
- prompt = ''
602
- for i, (old_query, response) in enumerate(history):
603
- prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
604
- prompt += 'Question: {} {}'.format(query, answer_format)
605
- return prompt
606
-
607
-
608
- class CogVLMForCausalLM(CogVLMPreTrainedModel):
609
- _auto_class = "AutoModelForCausalLM"
610
-
611
- def __init__(self, config):
612
- super().__init__(config)
613
- self.model = CogVLMModel(config)
614
- self.vocab_size = config.vocab_size
615
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
616
-
617
- # Initialize weights and apply final processing
618
- self.post_init()
619
-
620
- def get_input_embeddings(self):
621
- return self.model.embed_tokens
622
-
623
- def set_input_embeddings(self, value):
624
- self.model.embed_tokens = value
625
-
626
- def get_output_embeddings(self):
627
- return self.lm_head
628
-
629
- def set_output_embeddings(self, new_embeddings):
630
- self.lm_head = new_embeddings
631
-
632
- def set_decoder(self, decoder):
633
- self.model = decoder
634
-
635
- def get_decoder(self):
636
- return self.model
637
-
638
- def forward(
639
- self,
640
- input_ids: torch.LongTensor = None,
641
- images: List[List[torch.Tensor]] = None,
642
- token_type_ids: Optional[torch.LongTensor] = None,
643
- attention_mask: Optional[torch.Tensor] = None,
644
- position_ids: Optional[torch.LongTensor] = None,
645
- past_key_values: Optional[List[torch.FloatTensor]] = None,
646
- inputs_embeds: Optional[torch.FloatTensor] = None,
647
- use_cache: Optional[bool] = None,
648
- output_attentions: Optional[bool] = None,
649
- output_hidden_states: Optional[bool] = None,
650
- return_dict: Optional[bool] = None,
651
- labels: Optional[torch.LongTensor] = None,
652
- ) -> Union[Tuple, CausalLMOutputWithPast]:
653
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
654
- output_hidden_states = (
655
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
656
- )
657
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
658
-
659
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
660
- outputs = self.model(
661
- input_ids=input_ids,
662
- images=images,
663
- token_type_ids=token_type_ids,
664
- attention_mask=attention_mask,
665
- position_ids=position_ids,
666
- past_key_values=past_key_values,
667
- inputs_embeds=inputs_embeds,
668
- use_cache=use_cache,
669
- output_attentions=output_attentions,
670
- output_hidden_states=output_hidden_states,
671
- return_dict=return_dict,
672
- )
673
-
674
- hidden_states = outputs[0]
675
- logits = self.lm_head(hidden_states)
676
- logits = logits.float()
677
-
678
- loss = None
679
- if labels is not None:
680
- # Shift so that tokens < n predict n
681
- shift_logits = logits[..., :-1, :].contiguous()
682
- shift_labels = labels[..., 1:].contiguous()
683
- # Flatten the tokens
684
- loss_fct = CrossEntropyLoss()
685
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
686
- shift_labels = shift_labels.view(-1)
687
- # Enable model parallelism
688
- shift_labels = shift_labels.to(shift_logits.device)
689
- loss = loss_fct(shift_logits, shift_labels)
690
-
691
- if not return_dict:
692
- output = (logits,) + outputs[1:]
693
- return (loss,) + output if loss is not None else output
694
-
695
- return CausalLMOutputWithPast(
696
- loss=loss,
697
- logits=logits,
698
- past_key_values=outputs.past_key_values,
699
- hidden_states=outputs.hidden_states,
700
- attentions=outputs.attentions,
701
- )
702
-
703
- def _prepare_attention_mask_for_generation(
704
- self,
705
- inputs: torch.Tensor,
706
- pad_token_id: Optional[int],
707
- eos_token_id: Optional[Union[int, List[int]]],
708
- ) -> torch.LongTensor:
709
- return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
710
-
711
- def prepare_inputs_for_generation(
712
- self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
713
- ):
714
- # build position_ids if needed
715
- position_ids = kwargs.get("position_ids", None)
716
- if position_ids is None:
717
- position_ids = build_position_ids(token_type_ids, attention_mask)
718
-
719
- if past_key_values:
720
- input_ids = input_ids[:, -1:]
721
- token_type_ids = token_type_ids[:, -1:]
722
- position_ids = position_ids[:, -1:]
723
-
724
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
725
- if inputs_embeds is not None and past_key_values is None:
726
- model_inputs = {"inputs_embeds": inputs_embeds}
727
- else:
728
- model_inputs = {"input_ids": input_ids}
729
-
730
- model_inputs.update(
731
- {
732
- "token_type_ids": token_type_ids,
733
- "images": images,
734
- "position_ids": position_ids,
735
- "past_key_values": past_key_values,
736
- "use_cache": kwargs.get("use_cache"),
737
- "attention_mask": attention_mask,
738
- }
739
- )
740
- return model_inputs
741
-
742
- def _update_model_kwargs_for_generation(
743
- self,
744
- outputs: "ModelOutput",
745
- model_kwargs: Dict[str, Any],
746
- is_encoder_decoder: bool = False,
747
- standardize_cache_format: bool = False,
748
- ) -> Dict[str, Any]:
749
- # update past_key_values
750
- model_kwargs["past_key_values"] = self._extract_past_from_model_output(
751
- outputs, standardize_cache_format=standardize_cache_format
752
- )
753
- if getattr(outputs, "state", None) is not None:
754
- model_kwargs["state"] = outputs.state
755
-
756
- # update token_type_ids with last value
757
- if "token_type_ids" in model_kwargs:
758
- token_type_ids = model_kwargs["token_type_ids"]
759
- new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
760
- device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
761
- model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
762
-
763
- if not is_encoder_decoder:
764
- # update attention mask
765
- if "attention_mask" in model_kwargs:
766
- attention_mask = model_kwargs["attention_mask"]
767
- model_kwargs["attention_mask"] = torch.cat(
768
- [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
769
- )
770
- else:
771
- # update decoder attention mask
772
- if "decoder_attention_mask" in model_kwargs:
773
- decoder_attention_mask = model_kwargs["decoder_attention_mask"]
774
- model_kwargs["decoder_attention_mask"] = torch.cat(
775
- [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
776
- dim=-1,
777
- )
778
-
779
- return model_kwargs
780
-
781
- def _reorder_cache(self, past_key_values, beam_idx):
782
- reordered_past = ()
783
- for layer_past in past_key_values:
784
- reordered_past += (
785
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
786
- )
787
- return reordered_past
788
-
789
- def build_conversation_input_ids(
790
- self,
791
- tokenizer: "PreTrainedTokenizer",
792
- *,
793
- query: str,
794
- history: Optional[List[Tuple[str, str]]] = None,
795
- images: Optional[List["PIL.Image"]] = None,
796
- template_version: Optional[Literal["base", "chat", "vqa"]] = None,
797
- ):
798
- image_size: int = self.config.vision_config['image_size']
799
- patch_size: int = self.config.vision_config['patch_size']
800
- template_version = template_version or self.config.template_version
801
- assert images is None or len(images) <= 1, f"not support multi images by now."
802
- history = history or []
803
- text = _history_to_prompt(template_version, history, query)
804
-
805
- input_ids = [tokenizer.bos_token_id]
806
- token_type_ids = [LANGUAGE_TOKEN_TYPE]
807
- if images is not None and len(images) == 1:
808
- # vision
809
- transform = transforms.Compose(
810
- [
811
- transforms.Resize(
812
- (image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC
813
- ),
814
- transforms.ToTensor(),
815
- transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
816
- ]
817
- )
818
- images = [transform(images[0])]
819
- # language
820
- vision_token_num = (image_size // patch_size) * (image_size // patch_size) + 2
821
- input_ids += [tokenizer.pad_token_id] * vision_token_num
822
- token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
823
- text_ids = tokenizer.encode(text, add_special_tokens=False)
824
-
825
- input_ids += text_ids
826
- token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
827
- attention_mask = [1] * len(input_ids)
828
-
829
- return {
830
- 'input_ids': torch.tensor(input_ids, dtype=torch.long),
831
- 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
832
- 'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
833
- 'images': images,
834
- }
 
 
1
+ """largely copy from llama and adapt for cogvlm"""
2
+ import warnings
3
+ from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any
4
+
5
+ import math
6
+ import torch
7
+ from torch import nn
8
+ from torch.nn import functional as F
9
+ from torch.nn import CrossEntropyLoss
10
+ from torchvision import transforms
11
+ from einops import rearrange
12
+
13
+ from transformers import PreTrainedModel, PreTrainedTokenizer
14
+ from transformers.utils.logging import get_logger
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
17
+
18
+ from .configuration_cogvlm import CogVLMConfig
19
+ from .visual import EVA2CLIPModel
20
+
21
+ if TYPE_CHECKING:
22
+ from transformers.utils import ModelOutput
23
+
24
+ logger = get_logger(__name__)
25
+
26
+ LANGUAGE_TOKEN_TYPE = 0
27
+ VISION_TOKEN_TYPE = 1
28
+
29
+
30
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
31
+ def _make_causal_mask(
32
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
33
+ ):
34
+ """
35
+ Make causal mask used for bi-directional self-attention.
36
+ """
37
+ bsz, tgt_len = input_ids_shape
38
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
39
+ mask_cond = torch.arange(mask.size(-1), device=device)
40
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
41
+ mask = mask.to(dtype)
42
+
43
+ if past_key_values_length > 0:
44
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
45
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
46
+
47
+
48
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
49
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
50
+ """
51
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
52
+ """
53
+ bsz, src_len = mask.size()
54
+ tgt_len = tgt_len if tgt_len is not None else src_len
55
+
56
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
57
+
58
+ inverted_mask = 1.0 - expanded_mask
59
+
60
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
61
+
62
+
63
+ class RMSNorm(nn.Module):
64
+ def __init__(self, hidden_size, eps=1e-6):
65
+ super().__init__()
66
+ self.weight = nn.Parameter(torch.ones(hidden_size))
67
+ self.variance_epsilon = eps
68
+
69
+ def forward(self, hidden_states):
70
+ input_dtype = hidden_states.dtype
71
+ hidden_states = hidden_states.to(torch.float32)
72
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
73
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
74
+ return (self.weight * hidden_states).to(input_dtype)
75
+
76
+
77
+ class MLP(nn.Module):
78
+ def __init__(self, config):
79
+ super().__init__()
80
+ self.hidden_size = config.hidden_size
81
+ self.intermediate_size = config.intermediate_size
82
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
83
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
84
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
85
+ self.act_fn = ACT2FN[config.hidden_act]
86
+
87
+ def forward(self, x):
88
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
89
+ return down_proj
90
+
91
+
92
+ def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]":
93
+ vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool)
94
+ vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE)
95
+ language_token_mask = ~vision_token_mask
96
+ return vision_token_mask, language_token_mask
97
+
98
+
99
+ class VisionExpertMLP(nn.Module):
100
+ def __init__(self, config):
101
+ super().__init__()
102
+ self.language_mlp = MLP(config)
103
+ self.vision_mlp = MLP(config)
104
+
105
+ def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"):
106
+ output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device)
107
+ vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
108
+ output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask])
109
+ output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask])
110
+ return output
111
+
112
+
113
+ def attention_fn(
114
+ query_layer: "torch.tensor(B, H, L, HD)",
115
+ key_layer: "torch.tensor(B, H, L, HD)",
116
+ value_layer: "torch.tensor(B, H, L, HD)",
117
+ attention_mask: "torch.tensor(B, H, L, HD)",
118
+ *,
119
+ scaling_attention_score: bool = True,
120
+ attention_dropout: nn.Module = None
121
+ ):
122
+ attention_mask_bool = (attention_mask == 0)
123
+ is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all()
124
+ is_full = (attention_mask_bool > 0).all()
125
+ if not (int(torch.__version__.split('.')[0]) >= 2):
126
+ warnings.warn("It's recommended to use torch2.0 or higher.")
127
+ if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
128
+ dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
129
+ return torch.nn.functional.scaled_dot_product_attention(
130
+ query_layer, key_layer, value_layer,
131
+ attn_mask=None,
132
+ dropout_p=dropout_p,
133
+ is_causal=not is_full
134
+ )
135
+ else:
136
+ if scaling_attention_score:
137
+ query_layer = query_layer / math.sqrt(query_layer.shape[-1])
138
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
139
+ attention_scores = attention_scores + attention_mask
140
+ attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype)
141
+ if attention_dropout is not None:
142
+ attention_scores = attention_dropout(attention_scores)
143
+ context_layer = torch.matmul(attention_scores, value_layer)
144
+ return context_layer
145
+
146
+
147
+ class RotaryEmbedding(torch.nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = self._compute_inv_freq(device)
155
+ self.register_buffer("inv_freq", inv_freq)
156
+ self.max_seq_len_cached = 0
157
+
158
+ def _compute_inv_freq(self, device=None):
159
+ return 1.0 / (
160
+ self.base
161
+ ** (torch.arange(0, self.dim, 2, device=device) / self.dim)
162
+ )
163
+
164
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
165
+ self.max_seq_len_cached = seq_len
166
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
167
+
168
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
169
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
170
+ emb = torch.cat((freqs, freqs), dim=-1)
171
+ self.register_buffer("cos_cached", emb.cos()[:, None, :].to(dtype), persistent=False)
172
+ self.register_buffer("sin_cached", emb.sin()[:, None, :].to(dtype), persistent=False)
173
+
174
+ def forward(self, x, seq_len):
175
+ # x: [bs, num_attention_heads, seq_len, head_size]
176
+ if seq_len > self.max_seq_len_cached:
177
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
178
+
179
+ return (
180
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
181
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
182
+ )
183
+
184
+
185
+ def rotate_half(x):
186
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
187
+ return torch.cat((-x2, x1), dim=x1.ndim - 1)
188
+
189
+
190
+ def apply_rotary_pos_emb_index_bhs(q, k, cos, sin, position_id):
191
+ # batch_size, num_head, seq_len, hidden_size
192
+ cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(1), \
193
+ F.embedding(position_id, sin.squeeze(1)).unsqueeze(1)
194
+ q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
195
+ return q, k
196
+
197
+
198
+ class VisionExpertAttention(nn.Module):
199
+ def __init__(self, config):
200
+ super().__init__()
201
+ self.config = config
202
+ self.hidden_size = config.hidden_size
203
+ self.num_heads = config.num_attention_heads
204
+ self.head_dim = self.hidden_size // self.num_heads
205
+ self.max_position_embeddings = config.max_position_embeddings
206
+
207
+ self.rotary_emb = RotaryEmbedding(self.head_dim)
208
+ self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
209
+ self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
210
+ self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
211
+ self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
212
+
213
+ def _transpose_for_scores(self, tensor):
214
+ """Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD]."""
215
+ new_tensor_shape = tensor.size()[:-1] + (self.num_heads, self.head_dim)
216
+ tensor = tensor.view(*new_tensor_shape)
217
+ return tensor.permute(0, 2, 1, 3)
218
+
219
+ def forward(
220
+ self,
221
+ hidden_states: torch.Tensor,
222
+ token_type_ids: torch.LongTensor,
223
+ position_ids: torch.LongTensor,
224
+ attention_mask: Optional[torch.Tensor] = None,
225
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
226
+ output_attentions: bool = False,
227
+ use_cache: bool = False,
228
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
229
+ bsz, q_len, _ = hidden_states.size()
230
+ vision_token_mask, language_token_mask = get_expert_mask(token_type_ids)
231
+
232
+ shape = list(hidden_states.shape)
233
+ shape[-1] = shape[-1] * 3
234
+ mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device)
235
+ mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask])
236
+ mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask])
237
+
238
+ query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1)
239
+ query_states = self._transpose_for_scores(query_states) # B, H, L, HD
240
+ key_states = self._transpose_for_scores(key_states) # B, H, L, HD
241
+ value_states = self._transpose_for_scores(value_states) # B, H, L, HD
242
+
243
+ kv_seq_len = key_states.shape[-2]
244
+ if past_key_value is not None:
245
+ kv_seq_len += past_key_value[0].shape[-2]
246
+ cos, sin = self.rotary_emb(value_states, seq_len=position_ids.max() + 1)
247
+ query_states, key_states = apply_rotary_pos_emb_index_bhs(query_states, key_states, cos, sin, position_ids)
248
+
249
+ if past_key_value is not None:
250
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
251
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
252
+
253
+ past_key_value = (key_states, value_states) if use_cache else None
254
+
255
+ context_layer = attention_fn(
256
+ query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
257
+ scaling_attention_score=True, attention_dropout=None)
258
+ if context_layer.size() != (bsz, self.num_heads, q_len, self.head_dim):
259
+ raise ValueError(
260
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
261
+ f" {context_layer.size()}"
262
+ )
263
+ context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size)
264
+
265
+ attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device)
266
+ attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask])
267
+ attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask])
268
+
269
+ if output_attentions:
270
+ warnings.warn("output_attentions is not implemented.")
271
+
272
+ return attn_output, None, past_key_value
273
+
274
+
275
+ class CogVLMDecoderLayer(nn.Module):
276
+ def __init__(self, config):
277
+ super().__init__()
278
+ self.hidden_size = config.hidden_size
279
+ self.self_attn = VisionExpertAttention(config=config)
280
+ self.mlp = VisionExpertMLP(config)
281
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
282
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
283
+
284
+ def forward(
285
+ self,
286
+ hidden_states: torch.Tensor,
287
+ token_type_ids: torch.LongTensor,
288
+ position_ids: torch.LongTensor,
289
+ attention_mask: Optional[torch.Tensor] = None,
290
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
291
+ output_attentions: Optional[bool] = False,
292
+ use_cache: Optional[bool] = False,
293
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
294
+ residual = hidden_states
295
+
296
+ hidden_states = self.input_layernorm(hidden_states)
297
+
298
+ # Self Attention
299
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
300
+ hidden_states=hidden_states,
301
+ token_type_ids=token_type_ids,
302
+ position_ids=position_ids,
303
+ attention_mask=attention_mask,
304
+ past_key_value=past_key_value,
305
+ output_attentions=output_attentions,
306
+ use_cache=use_cache,
307
+ )
308
+ hidden_states = residual + hidden_states
309
+
310
+ # Fully Connected
311
+ residual = hidden_states
312
+ hidden_states = self.post_attention_layernorm(hidden_states)
313
+ hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids)
314
+ hidden_states = residual + hidden_states
315
+
316
+ outputs = (hidden_states,)
317
+
318
+ if output_attentions:
319
+ outputs += (self_attn_weights,)
320
+
321
+ if use_cache:
322
+ outputs += (present_key_value,)
323
+
324
+ return outputs # type: ignore
325
+
326
+
327
+ class CogVLMPreTrainedModel(PreTrainedModel):
328
+ config_class = CogVLMConfig
329
+ base_model_prefix = "model"
330
+ supports_gradient_checkpointing = False
331
+ _no_split_modules = ["CogVLMDecoderLayer", "TransformerLayer"]
332
+ _skip_keys_device_placement = "past_key_values"
333
+
334
+ def _init_weights(self, module):
335
+ std = self.config.initializer_range
336
+ if isinstance(module, nn.Linear):
337
+ module.weight.data.normal_(mean=0.0, std=std)
338
+ if module.bias is not None:
339
+ module.bias.data.zero_()
340
+ elif isinstance(module, nn.Embedding):
341
+ module.weight.data.normal_(mean=0.0, std=std)
342
+ if module.padding_idx is not None:
343
+ module.weight.data[module.padding_idx].zero_()
344
+
345
+
346
+ def is_empty(images_list: Optional[List[List[torch.Tensor]]]):
347
+ if images_list is None or len(images_list) == 0:
348
+ return True
349
+ for image_list in images_list:
350
+ if len(image_list):
351
+ return False
352
+ return True
353
+
354
+
355
+ def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)":
356
+ if attention_mask is not None:
357
+ tmp = x.clone()
358
+ tmp[~(attention_mask.bool())] = -1
359
+ else:
360
+ tmp = x.clone()
361
+ # image boi eoi token as LANGUAGE_TOKEN_TYPE
362
+ is_boi_eoi = torch.zeros_like(x, dtype=torch.bool)
363
+ is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)
364
+ is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE)
365
+ is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE)
366
+ is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE)
367
+ tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE
368
+ # final position ids
369
+ y = torch.zeros_like(x, dtype=torch.long)
370
+ y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE))
371
+ y = y.cumsum(dim=-1)
372
+ return y
373
+
374
+
375
+ class CogVLMModel(CogVLMPreTrainedModel):
376
+ def __init__(self, config):
377
+ super().__init__(config)
378
+ self.padding_idx = config.pad_token_id
379
+ self.vocab_size = config.vocab_size
380
+
381
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
382
+ self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
383
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
384
+
385
+ self.vision = EVA2CLIPModel(config)
386
+
387
+ self.gradient_checkpointing = False
388
+ # Initialize weights and apply final processing
389
+ self.post_init()
390
+
391
+ def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor:
392
+ images_list, images = images, []
393
+
394
+ images = []
395
+ for image_list in images_list:
396
+ for image in image_list:
397
+ images.append(image)
398
+
399
+ images = torch.stack(images)
400
+ images_features = self.vision(images)
401
+ return images_features
402
+
403
+ def forward(
404
+ self,
405
+ input_ids: torch.LongTensor = None,
406
+ images: List[List[torch.Tensor]] = None,
407
+ token_type_ids: Optional[torch.LongTensor] = None,
408
+ attention_mask: Optional[torch.Tensor] = None,
409
+ position_ids: Optional[torch.LongTensor] = None,
410
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
411
+ inputs_embeds: Optional[torch.FloatTensor] = None,
412
+ use_cache: Optional[bool] = None,
413
+ output_attentions: Optional[bool] = None,
414
+ output_hidden_states: Optional[bool] = None,
415
+ return_dict: Optional[bool] = None,
416
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
417
+ """take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)"""
418
+
419
+ if past_key_values is not None:
420
+ pass # generate mode with past_key_values. the image features are already mapped
421
+ else:
422
+ # not allow for inputs_embeds, because we want to process image feature
423
+ assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
424
+ if not is_empty(images): # multi-modality
425
+ assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!"
426
+ assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}"
427
+ inputs_embeds = self.embed_tokens(input_ids)
428
+ images_features = self.encode_images(images)
429
+ images_features = rearrange(images_features, 'b n d -> (b n) d')
430
+ images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
431
+ inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features)
432
+ else: # single-modality
433
+ if token_type_ids is None:
434
+ token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE
435
+ assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}"
436
+ inputs_embeds = self.embed_tokens(input_ids)
437
+
438
+ if position_ids is None:
439
+ position_ids = build_position_ids(token_type_ids, attention_mask)
440
+ input_ids = None
441
+
442
+ return self.llm_forward(
443
+ input_ids=input_ids,
444
+ token_type_ids=token_type_ids,
445
+ attention_mask=attention_mask,
446
+ position_ids=position_ids,
447
+ past_key_values=past_key_values,
448
+ inputs_embeds=inputs_embeds,
449
+ use_cache=use_cache,
450
+ output_attentions=output_attentions,
451
+ output_hidden_states=output_hidden_states,
452
+ return_dict=return_dict,
453
+ )
454
+
455
+ def llm_forward(
456
+ self,
457
+ input_ids: torch.LongTensor = None,
458
+ token_type_ids: torch.LongTensor = None,
459
+ attention_mask: Optional[torch.Tensor] = None,
460
+ position_ids: Optional[torch.LongTensor] = None,
461
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
462
+ inputs_embeds: Optional[torch.FloatTensor] = None,
463
+ use_cache: Optional[bool] = None,
464
+ output_attentions: Optional[bool] = None,
465
+ output_hidden_states: Optional[bool] = None,
466
+ return_dict: Optional[bool] = None,
467
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
468
+ """largely copy from llama forward and adapt for cogvlm with `token_type_ids`"""
469
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
470
+ output_hidden_states = (
471
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
472
+ )
473
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
474
+
475
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
476
+
477
+ # retrieve input_ids and inputs_embeds
478
+ if input_ids is not None and inputs_embeds is not None:
479
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
480
+ elif input_ids is not None:
481
+ batch_size, seq_length = input_ids.shape
482
+ elif inputs_embeds is not None:
483
+ batch_size, seq_length, _ = inputs_embeds.shape
484
+ else:
485
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
486
+
487
+ seq_length_with_past = seq_length
488
+ past_key_values_length = 0
489
+
490
+ if past_key_values is not None:
491
+ past_key_values_length = past_key_values[1][0][0].shape[2]
492
+
493
+ seq_length_with_past = seq_length_with_past + past_key_values_length
494
+
495
+ if position_ids is None:
496
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
497
+ position_ids = torch.arange(
498
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
499
+ )
500
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
501
+ else:
502
+ position_ids = position_ids.view(-1, seq_length).long()
503
+
504
+ if inputs_embeds is None:
505
+ inputs_embeds = self.embed_tokens(input_ids)
506
+ # embed positions
507
+ if attention_mask is None:
508
+ attention_mask = torch.ones(
509
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
510
+ )
511
+ attention_mask = self._prepare_decoder_attention_mask(
512
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
513
+ )
514
+
515
+ hidden_states = inputs_embeds
516
+
517
+ # decoder layers
518
+ all_hidden_states = () if output_hidden_states else None
519
+ all_self_attns = () if output_attentions else None
520
+ next_decoder_cache = () if use_cache else None
521
+
522
+ for idx, decoder_layer in enumerate(self.layers):
523
+ if output_hidden_states:
524
+ all_hidden_states += (hidden_states,)
525
+
526
+ past_key_value = past_key_values[1][idx] if past_key_values is not None else None
527
+ layer_outputs = decoder_layer(
528
+ hidden_states,
529
+ token_type_ids=token_type_ids,
530
+ attention_mask=attention_mask,
531
+ position_ids=position_ids,
532
+ past_key_value=past_key_value,
533
+ output_attentions=output_attentions,
534
+ use_cache=use_cache,
535
+ )
536
+ hidden_states = layer_outputs[0]
537
+
538
+ if use_cache:
539
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
540
+
541
+ if output_attentions:
542
+ all_self_attns += (layer_outputs[1],)
543
+
544
+ hidden_states = self.norm(hidden_states)
545
+
546
+ # add hidden states from the last decoder layer
547
+ if output_hidden_states:
548
+ all_hidden_states += (hidden_states,)
549
+
550
+ next_cache = next_decoder_cache if use_cache else None
551
+ if not return_dict:
552
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
553
+ return BaseModelOutputWithPast(
554
+ last_hidden_state=hidden_states,
555
+ past_key_values=next_cache,
556
+ hidden_states=all_hidden_states,
557
+ attentions=all_self_attns,
558
+ )
559
+
560
+ def get_input_embeddings(self):
561
+ return self.embed_tokens
562
+
563
+ def set_input_embeddings(self, value):
564
+ self.embed_tokens = value
565
+
566
+ # noinspection PyMethodMayBeStatic
567
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
568
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
569
+ # create causal mask
570
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
571
+ combined_attention_mask = None
572
+ if input_shape[-1] > 1:
573
+ combined_attention_mask = _make_causal_mask(
574
+ input_shape,
575
+ inputs_embeds.dtype,
576
+ device=inputs_embeds.device,
577
+ past_key_values_length=past_key_values_length,
578
+ )
579
+
580
+ if attention_mask is not None:
581
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
582
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
583
+ inputs_embeds.device
584
+ )
585
+ combined_attention_mask = (
586
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
587
+ )
588
+
589
+ return combined_attention_mask
590
+
591
+
592
+ def _history_to_prompt(signal_type, history, query):
593
+ if signal_type == 'base':
594
+ return query
595
+ elif signal_type == 'vqa':
596
+ answer_format = 'Short answer:'
597
+ elif signal_type == 'chat':
598
+ answer_format = 'Answer:'
599
+ else:
600
+ assert False, f"Unknown signal type {signal_type}"
601
+
602
+ prompt = ''
603
+ for i, (old_query, response) in enumerate(history):
604
+ prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
605
+ prompt += 'Question: {} {}'.format(query, answer_format)
606
+ return prompt
607
+
608
+
609
+ class CogVLMForCausalLM(CogVLMPreTrainedModel):
610
+ _auto_class = "AutoModelForCausalLM"
611
+
612
+ def __init__(self, config):
613
+ super().__init__(config)
614
+ self.model = CogVLMModel(config)
615
+ self.vocab_size = config.vocab_size
616
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
617
+
618
+ # Initialize weights and apply final processing
619
+ self.post_init()
620
+
621
+ def get_input_embeddings(self):
622
+ return self.model.embed_tokens
623
+
624
+ def set_input_embeddings(self, value):
625
+ self.model.embed_tokens = value
626
+
627
+ def get_output_embeddings(self):
628
+ return self.lm_head
629
+
630
+ def set_output_embeddings(self, new_embeddings):
631
+ self.lm_head = new_embeddings
632
+
633
+ def set_decoder(self, decoder):
634
+ self.model = decoder
635
+
636
+ def get_decoder(self):
637
+ return self.model
638
+
639
+ def forward(
640
+ self,
641
+ input_ids: torch.LongTensor = None,
642
+ images: List[List[torch.Tensor]] = None,
643
+ token_type_ids: Optional[torch.LongTensor] = None,
644
+ attention_mask: Optional[torch.Tensor] = None,
645
+ position_ids: Optional[torch.LongTensor] = None,
646
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
647
+ inputs_embeds: Optional[torch.FloatTensor] = None,
648
+ use_cache: Optional[bool] = None,
649
+ output_attentions: Optional[bool] = None,
650
+ output_hidden_states: Optional[bool] = None,
651
+ return_dict: Optional[bool] = None,
652
+ labels: Optional[torch.LongTensor] = None,
653
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
654
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
655
+ output_hidden_states = (
656
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
657
+ )
658
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
659
+
660
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
661
+ outputs = self.model(
662
+ input_ids=input_ids,
663
+ images=images,
664
+ token_type_ids=token_type_ids,
665
+ attention_mask=attention_mask,
666
+ position_ids=position_ids,
667
+ past_key_values=past_key_values,
668
+ inputs_embeds=inputs_embeds,
669
+ use_cache=use_cache,
670
+ output_attentions=output_attentions,
671
+ output_hidden_states=output_hidden_states,
672
+ return_dict=return_dict,
673
+ )
674
+
675
+ hidden_states = outputs[0]
676
+ logits = self.lm_head(hidden_states)
677
+ logits = logits.float()
678
+
679
+ loss = None
680
+ if labels is not None:
681
+ # Shift so that tokens < n predict n
682
+ shift_logits = logits[..., :-1, :].contiguous()
683
+ shift_labels = labels[..., 1:].contiguous()
684
+ # Flatten the tokens
685
+ loss_fct = CrossEntropyLoss()
686
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
687
+ shift_labels = shift_labels.view(-1)
688
+ # Enable model parallelism
689
+ shift_labels = shift_labels.to(shift_logits.device)
690
+ loss = loss_fct(shift_logits, shift_labels)
691
+
692
+ if not return_dict:
693
+ output = (logits,) + outputs[1:]
694
+ return (loss,) + output if loss is not None else output
695
+
696
+ return CausalLMOutputWithPast(
697
+ loss=loss,
698
+ logits=logits,
699
+ past_key_values=outputs.past_key_values,
700
+ hidden_states=outputs.hidden_states,
701
+ attentions=outputs.attentions,
702
+ )
703
+
704
+ def _prepare_attention_mask_for_generation(
705
+ self,
706
+ inputs: torch.Tensor,
707
+ pad_token_id: Optional[int],
708
+ eos_token_id: Optional[Union[int, List[int]]],
709
+ ) -> torch.LongTensor:
710
+ return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore
711
+
712
+ def prepare_inputs_for_generation(
713
+ self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
714
+ ):
715
+ # build position_ids if needed
716
+ position_ids = kwargs.get("position_ids", None)
717
+ if position_ids is None:
718
+ position_ids = build_position_ids(token_type_ids, attention_mask)
719
+
720
+ if past_key_values:
721
+ input_ids = input_ids[:, -1:]
722
+ token_type_ids = token_type_ids[:, -1:]
723
+ position_ids = position_ids[:, -1:]
724
+
725
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
726
+ if inputs_embeds is not None and past_key_values is None:
727
+ model_inputs = {"inputs_embeds": inputs_embeds}
728
+ else:
729
+ model_inputs = {"input_ids": input_ids}
730
+
731
+ model_inputs.update(
732
+ {
733
+ "token_type_ids": token_type_ids,
734
+ "images": images,
735
+ "position_ids": position_ids,
736
+ "past_key_values": past_key_values,
737
+ "use_cache": kwargs.get("use_cache"),
738
+ "attention_mask": attention_mask,
739
+ }
740
+ )
741
+ return model_inputs
742
+
743
+ def _update_model_kwargs_for_generation(
744
+ self,
745
+ outputs: "ModelOutput",
746
+ model_kwargs: Dict[str, Any],
747
+ is_encoder_decoder: bool = False,
748
+ standardize_cache_format: bool = False,
749
+ ) -> Dict[str, Any]:
750
+ # update past_key_values
751
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
752
+ outputs, standardize_cache_format=standardize_cache_format
753
+ )
754
+ if getattr(outputs, "state", None) is not None:
755
+ model_kwargs["state"] = outputs.state
756
+
757
+ # update token_type_ids with last value
758
+ if "token_type_ids" in model_kwargs:
759
+ token_type_ids = model_kwargs["token_type_ids"]
760
+ new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
761
+ device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
762
+ model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
763
+
764
+ if not is_encoder_decoder:
765
+ # update attention mask
766
+ if "attention_mask" in model_kwargs:
767
+ attention_mask = model_kwargs["attention_mask"]
768
+ model_kwargs["attention_mask"] = torch.cat(
769
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
770
+ )
771
+ else:
772
+ # update decoder attention mask
773
+ if "decoder_attention_mask" in model_kwargs:
774
+ decoder_attention_mask = model_kwargs["decoder_attention_mask"]
775
+ model_kwargs["decoder_attention_mask"] = torch.cat(
776
+ [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
777
+ dim=-1,
778
+ )
779
+
780
+ return model_kwargs
781
+
782
+ def _reorder_cache(self, past_key_values, beam_idx):
783
+ reordered_past = ()
784
+ for layer_past in past_key_values:
785
+ reordered_past += (
786
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
787
+ )
788
+ return reordered_past
789
+
790
+ def build_conversation_input_ids(
791
+ self,
792
+ tokenizer: "PreTrainedTokenizer",
793
+ *,
794
+ query: str,
795
+ history: Optional[List[Tuple[str, str]]] = None,
796
+ images: Optional[List["PIL.Image"]] = None,
797
+ template_version: Optional[Literal["base", "chat", "vqa"]] = None,
798
+ ):
799
+ image_size: int = self.config.vision_config['image_size']
800
+ patch_size: int = self.config.vision_config['patch_size']
801
+ template_version = template_version or self.config.template_version
802
+ assert images is None or len(images) <= 1, f"not support multi images by now."
803
+ history = history or []
804
+ text = _history_to_prompt(template_version, history, query)
805
+
806
+ input_ids = [tokenizer.bos_token_id]
807
+ token_type_ids = [LANGUAGE_TOKEN_TYPE]
808
+ if images is not None and len(images) == 1:
809
+ # vision
810
+ transform = transforms.Compose(
811
+ [
812
+ transforms.Resize(
813
+ (image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC
814
+ ),
815
+ transforms.ToTensor(),
816
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
817
+ ]
818
+ )
819
+ images = [transform(images[0])]
820
+ # language
821
+ vision_token_num = (image_size // patch_size) * (image_size // patch_size) + 2
822
+ input_ids += [tokenizer.pad_token_id] * vision_token_num
823
+ token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num
824
+ text_ids = tokenizer.encode(text, add_special_tokens=False)
825
+
826
+ input_ids += text_ids
827
+ token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids)
828
+ attention_mask = [1] * len(input_ids)
829
+
830
+ return {
831
+ 'input_ids': torch.tensor(input_ids, dtype=torch.long),
832
+ 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
833
+ 'attention_mask': torch.tensor(attention_mask, dtype=torch.long),
834
+ 'images': images,
835
+ }