Layoutlm_Inkaso_2
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1191
- Creditor address: {'precision': 0.9807692307692307, 'recall': 0.9622641509433962, 'f1': 0.9714285714285713, 'number': 53}
- Creditor name: {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}
- Creditor proxy: {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34}
- Debtor address: {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52}
- Debtor name: {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40}
- Doc id: {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}
- Title: {'precision': 0.9772727272727273, 'recall': 0.7678571428571429, 'f1': 0.86, 'number': 56}
- Overall Precision: 0.9217
- Overall Recall: 0.9056
- Overall F1: 0.9136
- Overall Accuracy: 0.9755
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Creditor address | Creditor name | Creditor proxy | Debtor address | Debtor name | Doc id | Title | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2524 | 6.6667 | 20 | 0.6528 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 53} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 34} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 52} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 40} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56} | 0.0 | 0.0 | 0.0 | 0.8405 |
0.4371 | 13.3333 | 40 | 0.2820 | {'precision': 0.7457627118644068, 'recall': 0.8301886792452831, 'f1': 0.7857142857142858, 'number': 53} | {'precision': 0.868421052631579, 'recall': 0.9428571428571428, 'f1': 0.904109589041096, 'number': 35} | {'precision': 0.9166666666666666, 'recall': 0.3235294117647059, 'f1': 0.4782608695652174, 'number': 34} | {'precision': 0.6222222222222222, 'recall': 0.5384615384615384, 'f1': 0.577319587628866, 'number': 52} | {'precision': 0.9375, 'recall': 0.375, 'f1': 0.5357142857142857, 'number': 40} | {'precision': 0.8, 'recall': 0.5, 'f1': 0.6153846153846154, 'number': 16} | {'precision': 0.8235294117647058, 'recall': 0.75, 'f1': 0.7850467289719627, 'number': 56} | 0.7835 | 0.6329 | 0.7002 | 0.9320 |
0.1154 | 20.0 | 60 | 0.1217 | {'precision': 1.0, 'recall': 0.9433962264150944, 'f1': 0.970873786407767, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} | {'precision': 0.7666666666666667, 'recall': 0.6764705882352942, 'f1': 0.71875, 'number': 34} | {'precision': 0.8947368421052632, 'recall': 0.9807692307692307, 'f1': 0.9357798165137614, 'number': 52} | {'precision': 0.9142857142857143, 'recall': 0.8, 'f1': 0.8533333333333333, 'number': 40} | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} | {'precision': 0.9565217391304348, 'recall': 0.7857142857142857, 'f1': 0.8627450980392156, 'number': 56} | 0.9111 | 0.8601 | 0.8849 | 0.9682 |
0.0263 | 26.6667 | 80 | 0.1306 | {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} | {'precision': 0.7307692307692307, 'recall': 0.5588235294117647, 'f1': 0.6333333333333334, 'number': 34} | {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52} | {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40} | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 56} | 0.9323 | 0.8671 | 0.8986 | 0.9704 |
0.0113 | 33.3333 | 100 | 0.1161 | {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} | {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34} | {'precision': 1.0, 'recall': 0.9807692307692307, 'f1': 0.9902912621359222, 'number': 52} | {'precision': 0.9285714285714286, 'recall': 0.975, 'f1': 0.951219512195122, 'number': 40} | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} | {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 56} | 0.9281 | 0.9021 | 0.9149 | 0.9755 |
0.0079 | 40.0 | 120 | 0.1306 | {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} | {'precision': 0.7272727272727273, 'recall': 0.7058823529411765, 'f1': 0.7164179104477613, 'number': 34} | {'precision': 1.0, 'recall': 0.9807692307692307, 'f1': 0.9902912621359222, 'number': 52} | {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40} | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} | {'precision': 1.0, 'recall': 0.7678571428571429, 'f1': 0.8686868686868687, 'number': 56} | 0.9299 | 0.8811 | 0.9048 | 0.9727 |
0.0064 | 46.6667 | 140 | 0.1191 | {'precision': 0.9807692307692307, 'recall': 0.9622641509433962, 'f1': 0.9714285714285713, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35} | {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34} | {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52} | {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40} | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16} | {'precision': 0.9772727272727273, 'recall': 0.7678571428571429, 'f1': 0.86, 'number': 56} | 0.9217 | 0.9056 | 0.9136 | 0.9755 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Szczotar93/Layoutlm_Inkaso_2
Base model
microsoft/layoutlm-base-uncased