See axolotl config
axolotl version: 0.6.0
base_model: JackFram/llama-160m
batch_size: 120
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- format: custom
path: argilla/databricks-dolly-15k-curated-en
type:
field_input: original-instruction
field_instruction: original-instruction
field_output: original-response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
device_map: auto
eval_sample_packing: false
eval_steps: 20
flash_attention: true
gradient_checkpointing: true
group_by_length: true
hub_model_id: SystemAdmin123/llama-160m
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 10000
micro_batch_size: 30
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: /root/.sn56/axolotl/tmp/llama-160m
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: true
save_steps: 20
save_total_limit: 1
sequence_len: 2048
special_tokens:
pad_token: </s>
tokenizer_type: LlamaTokenizerFast
torch_dtype: bf16
training_args_kwargs:
hub_private_repo: true
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: JackFram/llama-160m-argilla/databricks-dolly-15k-curated-en
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
llama-160m
This model is a fine-tuned version of JackFram/llama-160m on the argilla/databricks-dolly-15k-curated-en dataset. It achieves the following results on the evaluation set:
- Loss: 3.5996
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 120
- total_eval_batch_size: 120
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.1429 | 1 | 3.5738 |
3.0123 | 2.8571 | 20 | 3.6113 |
3.0228 | 5.7143 | 40 | 3.6002 |
3.0176 | 8.5714 | 60 | 3.6300 |
3.0121 | 11.4286 | 80 | 3.5950 |
3.0197 | 14.2857 | 100 | 3.5996 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 34
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for SystemAdmin123/llama-160m
Base model
JackFram/llama-160m