File size: 6,193 Bytes
de82f98
 
2555958
 
 
 
 
 
 
 
 
 
de82f98
 
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
 
 
 
 
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
 
de82f98
d5d12ad
2555958
 
de82f98
2555958
ddc8b8b
2555958
 
de82f98
2555958
 
 
 
 
 
de82f98
2555958
 
 
de82f98
2555958
de82f98
2555958
 
de82f98
2555958
de82f98
2555958
 
 
 
de82f98
 
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
2555958
de82f98
e62772c
de82f98
2555958
de82f98
2555958
 
 
 
de82f98
 
2555958
de82f98
2555958
de82f98
2555958
de82f98
339bd6e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
datasets:
- Svngoku/french-multilingual-reward-bench-dpo
language:
- fr
base_model:
- CohereForAI/aya-expanse-8b
metrics:
- bleu
- accuracy
pipeline_tag: text-generation
---

# Model Card for French  Aya Expanse 8B

<img src="https://huggingface.co/CohereForAI/aya-expanse-8b/resolve/main/aya-expanse-8B.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

**Aya Expanse 8B** is an open-weight research release of a model with highly advanced multilingual capabilities. It focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the result of a year’s dedicated research from [Cohere For AI](https://cohere.for.ai/), including [data arbitrage](https://arxiv.org/abs/2408.14960), [multilingual preference training](https://arxiv.org/abs/2407.02552), [safety tuning](https://arxiv.org/abs/2406.18682), and [model merging](https://arxiv.org/abs/2410.10801). The result is a powerful multilingual large language model.

This model card corresponds to the 8-billion version of the Aya Expanse model. We also released an 32-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-expanse-32B).

- Developed by: [Cohere For AI](https://cohere.for.ai/) 
- Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/)
- License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
- Model: Aya Expanse 8B
- Model Size: 8 billion parameters

### Supported Languages

The model cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese.

But the fine-tuned version is focus on `French`

### How to Use Aya Expanse

Install the transformers library and load Aya Expanse 8B as follows:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "Svngoku/French-Aya-Expanse-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Format the message with the chat template
messages = [{"role": "user", "content": "Quels est la superficie de Paris"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

gen_tokens = model.generate(
    input_ids, 
    max_new_tokens=100, 
    do_sample=True, 
    temperature=0.3,
    )

gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
```

### Example Notebooks

**Fine-Tuning:**
- [Detailed Fine-Tuning Notebook](https://colab.research.google.com/drive/1ryPYXzqb7oIn2fchMLdCNSIH5KfyEtv4).

**Community-Contributed Use Cases:**:

The following notebooks contributed by *Cohere For AI Community* members show how Aya Expanse can be used for different use cases:
- [Mulitlingual Writing Assistant](https://colab.research.google.com/drive/1SRLWQ0HdYN_NbRMVVUHTDXb-LSMZWF60)
- [AyaMCooking](https://colab.research.google.com/drive/1-cnn4LXYoZ4ARBpnsjQM3sU7egOL_fLB?usp=sharing)
- [Multilingual Question-Answering System](https://colab.research.google.com/drive/1bbB8hzyzCJbfMVjsZPeh4yNEALJFGNQy?usp=sharing)


## Model Details

**Input**: Models input text only.

**Output**: Models generate text only.

**Model Architecture**: Aya Expanse 8B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes supervised finetuning, preference training, and model merging.

**Languages covered**: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese

**Context length**: 8K

For more details about how the model was trained, check out [our blogpost](https://huggingface.co/blog/aya-expanse).

### Evaluation

They evaluated Aya Expanse 8B against Gemma 2 9B, Llama 3.1 8B, Ministral 8B, and Qwen 2.5 7B using the `dolly_human_edited` subset from the [Aya Evaluation Suite dataset](https://huggingface.co/datasets/CohereForAI/aya_evaluation_suite) and m-ArenaHard, a dataset based on the [Arena-Hard-Auto dataset](https://huggingface.co/datasets/lmarena-ai/arena-hard-auto-v0.1) and translated to the 23 languages we support in Aya Expanse 8B. Win-rates were determined using gpt-4o-2024-08-06 as a judge. For a conservative benchmark, we report results from gpt-4o-2024-08-06, though gpt-4o-mini scores showed even stronger performance.

The m-ArenaHard dataset, used to evaluate Aya Expanse’s capabilities, is publicly available [here](https://huggingface.co/datasets/CohereForAI/m-ArenaHard).

<img src="winrates_marenahard_complete.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="winrates_dolly.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="winrates_by_lang.png"  width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<img src="winrates_step_by_step.png"  width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/>


### Model Card Contact

For errors or additional questions about details in this model card, contact info@for.ai.

### Terms of Use

They hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).