Edit model card

Regression_bert_2

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8766
  • Mse: 3.8766
  • Mae: 1.3858
  • R2: -1.0002
  • Accuracy: 0.5714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mse Mae R2 Accuracy
No log 1.0 1 3.5920 3.5920 1.5846 -2.3703 0.2857
No log 2.0 2 3.3981 3.3981 1.5187 -2.1884 0.2857
No log 3.0 3 3.2200 3.2200 1.4559 -2.0213 0.2857
No log 4.0 4 3.0496 3.0496 1.3924 -1.8614 0.4286
No log 5.0 5 2.8847 2.8847 1.3402 -1.7067 0.4286
No log 6.0 6 2.7261 2.7261 1.2955 -1.5579 0.4286
No log 7.0 7 2.5772 2.5772 1.2590 -1.4182 0.4286
No log 8.0 8 2.4361 2.4361 1.2302 -1.2858 0.4286
No log 9.0 9 2.3055 2.3055 1.2027 -1.1632 0.4286
No log 10.0 10 2.1844 2.1844 1.1765 -1.0496 0.4286
No log 11.0 11 2.0725 2.0725 1.1546 -0.9446 0.4286
No log 12.0 12 1.9723 1.9723 1.1457 -0.8506 0.4286
No log 13.0 13 1.8851 1.8851 1.1381 -0.7688 0.4286
No log 14.0 14 1.8103 1.8103 1.1315 -0.6985 0.2857
No log 15.0 15 1.7472 1.7472 1.1258 -0.6394 0.2857
No log 16.0 16 1.6959 1.6959 1.1211 -0.5912 0.2857
No log 17.0 17 1.6558 1.6558 1.1174 -0.5536 0.2857
No log 18.0 18 1.6262 1.6262 1.1146 -0.5259 0.2857
No log 19.0 19 1.6067 1.6067 1.1128 -0.5076 0.2857
No log 20.0 20 1.5970 1.5970 1.1118 -0.4984 0.2857

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.