Regression_albert_NOaug_MSEloss

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4715
  • Mse: 0.4715
  • Mae: 0.6001
  • R2: 0.1320
  • Accuracy: 0.4737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Mse Mae R2 Accuracy
No log 1.0 33 0.2966 0.2966 0.4630 0.1139 0.7568
No log 2.0 66 0.2679 0.2679 0.4039 0.1995 0.7568
No log 3.0 99 0.4088 0.4088 0.5125 -0.2213 0.5405
No log 4.0 132 0.4331 0.4331 0.5399 -0.2939 0.4865
No log 5.0 165 0.3699 0.3699 0.4317 -0.1053 0.6757
No log 6.0 198 0.3456 0.3456 0.4117 -0.0325 0.6216
No log 7.0 231 0.3371 0.3371 0.4155 -0.0072 0.6757
No log 8.0 264 0.3261 0.3261 0.3811 0.0256 0.7297
No log 9.0 297 0.2312 0.2312 0.2705 0.3092 0.8108
No log 10.0 330 0.3194 0.3194 0.3681 0.0457 0.6757
No log 11.0 363 0.3638 0.3638 0.4124 -0.0870 0.6757
No log 12.0 396 0.3101 0.3101 0.3630 0.0734 0.7027
No log 13.0 429 0.2762 0.2762 0.3221 0.1748 0.7568
No log 14.0 462 0.2970 0.2970 0.3376 0.1126 0.7297
No log 15.0 495 0.3185 0.3185 0.3532 0.0483 0.7297

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.