wav2vec-best-CREMA-sentiment-analysis

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Top2 Accuracy: 0.8940
  • Loss: 0.8287
  • Accuracy: 0.7074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Top2 Accuracy Validation Loss Accuracy
1.7824 0.98 43 0.4982 1.7749 0.2482
1.7115 1.99 87 0.5466 1.6566 0.3638
1.5255 2.99 131 0.6604 1.5017 0.4418
1.3716 4.0 175 0.7679 1.3359 0.5636
1.2436 4.98 218 0.8271 1.1862 0.6407
1.1366 5.99 262 0.8315 1.1223 0.6595
1.0322 6.99 306 0.8593 1.0422 0.6747
0.9668 8.0 350 0.8907 0.9335 0.7222
0.8932 8.98 393 0.8943 0.9093 0.7231
0.8431 9.99 437 0.8692 0.9163 0.7115
0.8047 10.99 481 0.8996 0.8488 0.7375
0.7444 12.0 525 0.8898 0.8611 0.7204
0.6921 12.98 568 0.8916 0.8399 0.7258
0.6973 13.99 612 0.8844 0.8425 0.7231
0.632 14.99 656 0.8880 0.8308 0.7249
0.6275 16.0 700 0.8862 0.8400 0.7177
0.6153 16.98 743 0.8934 0.8266 0.7330
0.5597 17.99 787 0.8934 0.8157 0.7357
0.5658 18.99 831 0.8862 0.8015 0.7446
0.54 20.0 875 0.8943 0.8368 0.7258
0.5301 20.98 918 0.9023 0.8095 0.7321
0.5262 21.99 962 0.8817 0.8521 0.7168
0.4754 22.99 1006 0.8987 0.8003 0.7428
0.4753 24.0 1050 0.8952 0.7988 0.7410
0.455 24.98 1093 0.8952 0.7902 0.7419
0.4574 25.99 1137 0.8871 0.8030 0.7366
0.4618 26.99 1181 0.8970 0.8051 0.7294
0.4222 28.0 1225 0.8925 0.8108 0.7267
0.4301 28.98 1268 0.8934 0.8066 0.7339
0.4147 29.49 1290 0.8916 0.8072 0.7357

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Supreeta03/wav2vec2-base-CREMAD-sentiment-analysis

Finetuned
(694)
this model