YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Roberta Large STS-B
This model is a fine tuned RoBERTA model over STS-B.
It was trained with these params:
!python /content/transformers/examples/text-classification/run_glue.py
--model_type roberta
--model_name_or_path roberta-large
--task_name STS-B
--do_train
--do_eval
--do_lower_case
--data_dir /content/glue_data/STS-B/
--max_seq_length 128
--per_gpu_eval_batch_size=8
--per_gpu_train_batch_size=8
--learning_rate 2e-5
--num_train_epochs 3.0
--output_dir /content/roberta-sts-b
How to run
import toolz
import torch
batch_size = 6
def roberta_similarity_batches(to_predict):
batches = toolz.partition(batch_size, to_predict)
similarity_scores = []
for batch in batches:
sentences = [(sentence_similarity["sent1"], sentence_similarity["sent2"]) for sentence_similarity in batch]
batch_scores = similarity_roberta(model, tokenizer,sentences)
similarity_scores = similarity_scores + batch_scores[0].cpu().squeeze(axis=1).tolist()
return similarity_scores
def similarity_roberta(model, tokenizer, sent_pairs):
batch_token = tokenizer(sent_pairs, padding='max_length', truncation=True, max_length=500)
res = model(torch.tensor(batch_token['input_ids']).cuda(), attention_mask=torch.tensor(batch_token["attention_mask"]).cuda())
return res
similarity_roberta(model, tokenizer, [('NEW YORK--(BUSINESS WIRE)--Rosen Law Firm, a global investor rights law firm, announces it is investigating potential securities claims on behalf of shareholders of Vale S.A. ( VALE ) resulting from allegations that Vale may have issued materially misleading business information to the investing public',
'EQUITY ALERT: Rosen Law Firm Announces Investigation of Securities Claims Against Vale S.A. – VALE')])
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.