File size: 11,808 Bytes
73c6df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760b4ba
 
68ff9a7
9d48bd4
73c6df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e6bb3
 
73c6df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428ec0e
73c6df1
59e6bb3
 
 
73c6df1
 
 
 
 
428ec0e
73c6df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2d5fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: other
license_name: seallms
license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
language:
- en
- zh
- vi
- id
- th
- ms
- km
- lo
- my
- tl
tags:
- multilingual
- sea
---
<p align="center">
  <img src="seal_logo.png" width="200" />
</p>

# *SeaLLM-7B-v2.5* - Large Language Models for Southeast Asia
<h1 style="color: #ff3860">**This repository is the modification of the SeaLLMs/SeaLLM-7B-v2.5**</h1>

## We offer a SeaLLM-7B-v2.5-AWQ which is a 4-bit AWQ quantization version of the SeaLLMs/SeaLLM-7B-v2.5 (compatible with vLLM)



<p align="center">
<a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Website</a>
&nbsp;&nbsp;
<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> ๐Ÿค— Tech Memo</a>
&nbsp;&nbsp;
<a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> ๐Ÿค— DEMO</a>
&nbsp;&nbsp;
<a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
&nbsp;&nbsp;
<a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a>
</p>

๐Ÿ”ฅ<span style="color: #ff3860">[HOT]</span> SeaLLMs project now has a dedicated website - [damo-nlp-sg.github.io/SeaLLMs](https://damo-nlp-sg.github.io/SeaLLMs/)

We introduce [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡จ๐Ÿ‡ณ ๐Ÿ‡ป๐Ÿ‡ณ ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿ‡น๐Ÿ‡ญ ๐Ÿ‡ฒ๐Ÿ‡พ ๐Ÿ‡ฐ๐Ÿ‡ญ ๐Ÿ‡ฑ๐Ÿ‡ฆ ๐Ÿ‡ฒ๐Ÿ‡ฒ ๐Ÿ‡ต๐Ÿ‡ญ. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.

### Highlights
* [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) outperforms GPT-3.5 and achieves 7B SOTA on most multilingual knowledge benchmarks for SEA languages (MMLU, M3Exam & VMLU).
* It achieves 79.0 and 34.9 on GSM8K and MATH, surpassing GPT-3.5 in MATH.

### Release and DEMO

- DEMO:
  - [SeaLLMs/SeaLLM-7B-v2.5](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5).
  - [SeaLLMs/SeaLLM-7B | SeaLMMM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B) - Experimental multimodal SeaLLM.
- Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
- Model weights:
  - [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5).
  - [SeaLLM-7B-v2.5-GGUF](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF).
- Run locally:
  - [LM-studio](https://lmstudio.ai/): 
    - [SeaLLM-7B-v2.5-q4_0-chatml](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF/blob/main/seallm-7b-v2.5-chatml.Q4_K_M.gguf) with ChatML template (`<eos>` token changed to `<|im_end|>`)
    - [SeaLLM-7B-v2.5-q4_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF/blob/main/seallm-7b-v2.5.Q4_K_M.gguf) - must use SeaLLM-7B-v2.5 chat format.
  - [MLX for Apple Silicon](https://github.com/ml-explore/mlx): [SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized)
- Previous models:
  - [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2)
  - [SeaLLM-7B-v1](https://huggingface.co/SeaLLMs/SeaLLM-7B-v1)

<blockquote style="color:red">
<p><strong style="color: red">Terms of Use and License</strong>: 
By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
</blockquote>

> **Disclaimer**:
> We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
> Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
> In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.

> The logo was generated by DALL-E 3.


### What's new since SeaLLM-7B-v2?

* SeaLLM-7B-v2.5 was built on top of Gemma-7b, and underwent large scale SFT and carefully designed alignment.


## Evaluation


### Multilingual World Knowledge


We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.

| Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
|-----| -----  | --- |  -- | ----- | ---- | --- | --- | --- |
| GPT-3.5         | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
| Vistral-7B-chat | Mono  | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
| Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
| SailorLM        | Multi | 52.72 | 59.76 | 67.74 | 50.14 | ---   | 39.53 | 37.73
| SeaLLM-7B-v2    | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
| SeaLLM-7B-v2.5  | Multi | 64.05 | 76.87 | 62.54 | 63.11 | 53.30 | 48.64 | 46.86


### Zero-shot CoT Multilingual Math Reasoning

<!--
[SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.5** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (๐Ÿ‡จ๐Ÿ‡ณ ๐Ÿ‡ป๐Ÿ‡ณ ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿ‡น๐Ÿ‡ญ). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **28.4** vs 18.1 scores.

![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
-->

| Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
| Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6.0
| Vistral-7b-chat | 48.2 | 12.5 |  |  | 48.7 | 3.1 |  |  |  | 
| Qwen1.5-7B-chat | 56.8 | 15.3 | 40.0 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 | 4.7
| SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
| SeaLLM-7B-v2.5 | 78.5 | 34.9 | 51.3 | 22.1 | 72.3 | 30.2 | 71.5 | 30.1 | 62.0 | 28.4


Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).

#### Zero-shot MGSM

[SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Thai.

| Model | MGSM-Zh | MGSM-Th
|-----| -----  | --- 
| ChatGPT (reported) | 61.2 | 47.2
| Qwen-14B-chat | 59.6 | 28
| SeaLLM-7B-v2 | **64.8** | 62.4
| SeaLLM-7B-v2.5 | 58.0 | **64.8**


### Sea-Bench

![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)


### Usage

**IMPORTANT NOTICE for using the model**

* `<bos>` must be at start of prompt, ff your code's tokenizer does not prepend `<bos>` by default, you MUST prepend <bos> into the prompt yourself, otherwise, it would not work!
* Repitition penalty (e.g: in llama.cpp, ollama, LM-studio) must be set to **1** , otherwise will lead to degeneration!

#### Instruction format

```python
# ! WARNING, if your code's tokenizer does not prepend <bos> by default,
# You MUST prepend <bos> into the prompt yourself, otherwise, it would not work!
prompt = """<|im_start|>system
You are a helpful assistant.<eos>
<|im_start|>user
Hello world<eos>
<|im_start|>assistant
Hi there, how can I help?<eos>"""
# <|im_start|> is not a special token.
# Transformers chat_template should be consistent with vLLM format below.
# ! ENSURE 1 and only 1 bos `<bos>` at the beginning of sequence
print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
"""
```

#### Using transformers's chat_template
Install the latest transformers (>4.40)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
# use bfloat16 to ensure the best performance.
model = AutoModelForCausalLM.from_pretrained("SorawitChok/SeaLLM-7B-v2.5-AWQ", torch_dtype=torch.bfloat16, device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SorawitChok/SeaLLM-7B-v2.5-AWQ")
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello world"},
    {"role": "assistant", "content": "Hi there, how can I help you today?"},
    {"role": "user", "content": "Explain general relativity in details."}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
print(tokenizer.convert_ids_to_tokens(encodeds[0]))
model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
#### Using vLLM
```python
from vllm import LLM, SamplingParams
TURN_TEMPLATE = "<|im_start|>{role}\n{content}<eos>\n"
TURN_PREFIX = "<|im_start|>{role}\n"
def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
    # conversations: list of dict with key `role` and `content` (openai format)
    if conversations[0]['role'] != 'system' and system_prompt is not None:
        conversations = [{"role": "system", "content": system_prompt}] + conversations
    text = ''
    for turn_id, turn in enumerate(conversations):
        prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
        text += prompt
    if add_assistant_prefix:
        prompt = TURN_PREFIX.format(role='assistant')
        text += prompt    
    return text
sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['<eos>', '<|im_start|>'])
llm = LLM("SorawitChok/SeaLLM-7B-v2.5-AWQ", quantization="AWQ")

message = [
            {"role": "user", "content": "Explain general relativity in details."}
          ]
prompt = seallm_chat_convo_format(message, True)
gen = llm.generate(prompt, sampling_params)

print(gen[0].outputs[0].text)
```

## Acknowledgement to Our Linguists
We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
## Citation
If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [l.bing@alibaba-inc.com](mailto:l.bing@alibaba-inc.com)
**Author list and order will change!**
* `*` and `^` are equal contributions.
```
@article{damonlpsg2023seallm,
  author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Weiwen Xu, Hou Pong Chan,
            Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
            Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
            Chaoqun Liu, Hang Zhang, Lidong Bing},
  title = {SeaLLMs - Large Language Models for Southeast Asia},
  year = 2023,
  Eprint = {arXiv:2312.00738},
}
```