Edit model card

fine-tuned-vctkdataset

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1289
  • Wer: 0.1950

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 125 2.8536 1.0
No log 2.0 250 1.6881 1.0168
No log 3.0 375 0.3762 0.4656
1.8553 4.0 500 0.1728 0.2567
1.8553 5.0 625 0.1234 0.2073
1.8553 6.0 750 0.1231 0.2007
1.8553 7.0 875 0.1225 0.2013
0.1847 8.0 1000 0.1211 0.1959
0.1847 9.0 1125 0.1217 0.2007
0.1847 10.0 1250 0.1221 0.1980
0.1847 11.0 1375 0.1258 0.1983
0.1016 12.0 1500 0.1307 0.1959
0.1016 13.0 1625 0.1179 0.1942
0.1016 14.0 1750 0.1248 0.1983
0.1016 15.0 1875 0.1281 0.1954
0.0756 16.0 2000 0.1199 0.1967
0.0756 17.0 2125 0.1284 0.1967
0.0756 18.0 2250 0.1338 0.1982
0.0756 19.0 2375 0.1270 0.1987
0.0699 20.0 2500 0.1298 0.1964
0.0699 21.0 2625 0.1319 0.1950
0.0699 22.0 2750 0.1254 0.1925
0.0699 23.0 2875 0.1285 0.1949
0.0491 24.0 3000 0.1303 0.1948
0.0491 25.0 3125 0.1293 0.1964
0.0491 26.0 3250 0.1294 0.1969
0.0491 27.0 3375 0.1279 0.1952
0.043 28.0 3500 0.1318 0.1942
0.043 29.0 3625 0.1287 0.1950
0.043 30.0 3750 0.1289 0.1950

Framework versions

  • Transformers 4.29.0.dev0
  • Pytorch 2.0.0+cu118
  • Datasets 1.14.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.