fine-tuned-vctkdataset
This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1289
- Wer: 0.1950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 125 | 2.8536 | 1.0 |
No log | 2.0 | 250 | 1.6881 | 1.0168 |
No log | 3.0 | 375 | 0.3762 | 0.4656 |
1.8553 | 4.0 | 500 | 0.1728 | 0.2567 |
1.8553 | 5.0 | 625 | 0.1234 | 0.2073 |
1.8553 | 6.0 | 750 | 0.1231 | 0.2007 |
1.8553 | 7.0 | 875 | 0.1225 | 0.2013 |
0.1847 | 8.0 | 1000 | 0.1211 | 0.1959 |
0.1847 | 9.0 | 1125 | 0.1217 | 0.2007 |
0.1847 | 10.0 | 1250 | 0.1221 | 0.1980 |
0.1847 | 11.0 | 1375 | 0.1258 | 0.1983 |
0.1016 | 12.0 | 1500 | 0.1307 | 0.1959 |
0.1016 | 13.0 | 1625 | 0.1179 | 0.1942 |
0.1016 | 14.0 | 1750 | 0.1248 | 0.1983 |
0.1016 | 15.0 | 1875 | 0.1281 | 0.1954 |
0.0756 | 16.0 | 2000 | 0.1199 | 0.1967 |
0.0756 | 17.0 | 2125 | 0.1284 | 0.1967 |
0.0756 | 18.0 | 2250 | 0.1338 | 0.1982 |
0.0756 | 19.0 | 2375 | 0.1270 | 0.1987 |
0.0699 | 20.0 | 2500 | 0.1298 | 0.1964 |
0.0699 | 21.0 | 2625 | 0.1319 | 0.1950 |
0.0699 | 22.0 | 2750 | 0.1254 | 0.1925 |
0.0699 | 23.0 | 2875 | 0.1285 | 0.1949 |
0.0491 | 24.0 | 3000 | 0.1303 | 0.1948 |
0.0491 | 25.0 | 3125 | 0.1293 | 0.1964 |
0.0491 | 26.0 | 3250 | 0.1294 | 0.1969 |
0.0491 | 27.0 | 3375 | 0.1279 | 0.1952 |
0.043 | 28.0 | 3500 | 0.1318 | 0.1942 |
0.043 | 29.0 | 3625 | 0.1287 | 0.1950 |
0.043 | 30.0 | 3750 | 0.1289 | 0.1950 |
Framework versions
- Transformers 4.29.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 1.14.0
- Tokenizers 0.13.3
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.