YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-4-v2

optimized with onnx o4

from pathlib import Path
from transformers import AutoTokenizer
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer
from optimum.onnxruntime import AutoOptimizationConfig

model = "cross-encoder/ms-marco-MiniLM-L-4-v2"
tokenizer = AutoTokenizer.from_pretrained(model)
ort_model = ORTModelForSequenceClassification.from_pretrained(model, export=True)

save_dir = Path("/tmp/optimized_models")
save_dir.mkdir(exist_ok=True, parents=True)

optimizer = ORTOptimizer.from_pretrained(ort_model)
optimizer.optimize(
    optimization_config=AutoOptimizationConfig.O4(),
    save_dir=save_dir,
)

Run it with onnx

import torch
from transformers import AutoTokenizer
from transformers.pipelines.text_classification import ClassificationFunction
from optimum.pipelines import pipeline as ort_pipeline
from optimum.onnxruntime import ORTModelForSequenceClassification


model = "cross-encoder/ms-marco-MiniLM-L-4-v2"
device = torch.device(0) if torch.cuda.is_available() else -1
tokenizer = AutoTokenizer.from_pretrained(model)
ort_model = ORTModelForSequenceClassification.from_pretrained(
    model, file_name="model_optimized.onnx")
cross_encoder = ort_pipeline(
    task="text-classification",
    model=ort_model,
    tokenizer=tokenizer,
    device=device,
    function_to_apply=ClassificationFunction.SIGMOID,
    padding=True,
    truncation=True)

cross_encoder([{
    "text":
    "What is the purpose of life?",
    "text_pair":
    "The purpose of life is subjective and determined by each individual. Some may believe the purpose of life is to seek knowledge and education, to find happiness and fulfillment, or to live with purpose by helping others."
}])
Downloads last month
53
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.