saiga-phi-3-mini-4k

saiga-phi-3-mini-4k is an SFT fine-tuned version of microsoft/Phi-3-mini-4k-instruct using a custom training dataset. This model was made with Phinetune

Process

  • Learning Rate: 1.41e-05
  • Maximum Sequence Length: 2048
  • Dataset: IlyaGusev/ru_turbo_saiga
  • Split: train

πŸ’» Usage

!pip install -qU transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model = "Slavator096/saiga-phi-3-mini-4k"
tokenizer = AutoTokenizer.from_pretrained(model)

# Example prompt
prompt = "Your example prompt here"

# Generate a response
model = AutoModelForCausalLM.from_pretrained(model)
pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
outputs = pipeline(prompt, max_length=50, num_return_sequences=1)
print(outputs[0]["generated_text"])
Downloads last month
10
Safetensors
Model size
3.82B params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.