Edit model card

TSC_classification_model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0442
  • Precision: 0.8034
  • Recall: 0.7769
  • F1: 0.7899
  • Accuracy: 0.9944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 48 0.0448 0.4732 0.4380 0.4549 0.9866
No log 2.0 96 0.0389 0.5349 0.5702 0.552 0.9902
No log 3.0 144 0.0346 0.7154 0.7273 0.7213 0.9932
No log 4.0 192 0.0355 0.7611 0.7107 0.7350 0.9937
No log 5.0 240 0.0375 0.7603 0.7603 0.7603 0.9939
No log 6.0 288 0.0376 0.7478 0.7107 0.7288 0.9937
No log 7.0 336 0.0414 0.7699 0.7190 0.7436 0.9939
No log 8.0 384 0.0427 0.7778 0.7521 0.7647 0.9942
No log 9.0 432 0.0432 0.8120 0.7851 0.7983 0.9947
No log 10.0 480 0.0438 0.7983 0.7851 0.7917 0.9947
0.0095 11.0 528 0.0441 0.8034 0.7769 0.7899 0.9944
0.0095 12.0 576 0.0442 0.8034 0.7769 0.7899 0.9944

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SiriusW/TSC_classification_model

Finetuned
(6701)
this model