Edit model card

trainer6

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1849
  • Precision: 0.7169
  • Recall: 0.6966
  • F1: 0.7001
  • Accuracy: 0.6966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 100
  • eval_batch_size: 100
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3484 3.4483 100 1.5305 0.6491 0.5838 0.5902 0.5838
0.0689 6.8966 200 1.6797 0.6814 0.6543 0.6555 0.6543
0.0422 10.3448 300 1.9755 0.7036 0.6332 0.6426 0.6332
0.0253 13.7931 400 2.0218 0.6909 0.6455 0.6497 0.6455
0.0204 17.2414 500 2.1947 0.6785 0.6437 0.6498 0.6437
0.0113 20.6897 600 2.1949 0.6635 0.6367 0.6378 0.6367
0.0074 24.1379 700 2.3199 0.7000 0.6561 0.6535 0.6561
0.0055 27.5862 800 2.2287 0.7061 0.6737 0.6794 0.6737
0.0038 31.0345 900 2.0396 0.7120 0.7055 0.7048 0.7055
0.0033 34.4828 1000 2.2570 0.6870 0.6720 0.6743 0.6720
0.0052 37.9310 1100 2.1839 0.6979 0.6808 0.6819 0.6808
0.0024 41.3793 1200 2.1763 0.7029 0.6878 0.6906 0.6878
0.0024 44.8276 1300 2.2240 0.7111 0.6931 0.6945 0.6931
0.0032 48.2759 1400 2.3088 0.7134 0.6843 0.6868 0.6843
0.0021 51.7241 1500 2.3203 0.6999 0.6737 0.6763 0.6737
0.0022 55.1724 1600 2.1679 0.7217 0.7002 0.7039 0.7002
0.0017 58.6207 1700 2.1849 0.7169 0.6966 0.7001 0.6966

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SimoneJLaudani/trainer6

Finetuned
(6754)
this model