BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Siddarth-Pattnaik/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6929 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.8586 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6929 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.1717 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6929 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.8586 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.8008 |
cosine_mrr@10 | 0.7667 |
cosine_map@100 | 0.7701 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6829 |
cosine_accuracy@3 | 0.82 |
cosine_accuracy@5 | 0.8657 |
cosine_accuracy@10 | 0.9086 |
cosine_precision@1 | 0.6829 |
cosine_precision@3 | 0.2733 |
cosine_precision@5 | 0.1731 |
cosine_precision@10 | 0.0909 |
cosine_recall@1 | 0.6829 |
cosine_recall@3 | 0.82 |
cosine_recall@5 | 0.8657 |
cosine_recall@10 | 0.9086 |
cosine_ndcg@10 | 0.796 |
cosine_mrr@10 | 0.7599 |
cosine_map@100 | 0.7631 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6871 |
cosine_accuracy@3 | 0.8157 |
cosine_accuracy@5 | 0.8571 |
cosine_accuracy@10 | 0.8957 |
cosine_precision@1 | 0.6871 |
cosine_precision@3 | 0.2719 |
cosine_precision@5 | 0.1714 |
cosine_precision@10 | 0.0896 |
cosine_recall@1 | 0.6871 |
cosine_recall@3 | 0.8157 |
cosine_recall@5 | 0.8571 |
cosine_recall@10 | 0.8957 |
cosine_ndcg@10 | 0.7923 |
cosine_mrr@10 | 0.759 |
cosine_map@100 | 0.7628 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6671 |
cosine_accuracy@3 | 0.8043 |
cosine_accuracy@5 | 0.8414 |
cosine_accuracy@10 | 0.8771 |
cosine_precision@1 | 0.6671 |
cosine_precision@3 | 0.2681 |
cosine_precision@5 | 0.1683 |
cosine_precision@10 | 0.0877 |
cosine_recall@1 | 0.6671 |
cosine_recall@3 | 0.8043 |
cosine_recall@5 | 0.8414 |
cosine_recall@10 | 0.8771 |
cosine_ndcg@10 | 0.7738 |
cosine_mrr@10 | 0.7404 |
cosine_map@100 | 0.7449 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6443 |
cosine_accuracy@3 | 0.78 |
cosine_accuracy@5 | 0.8186 |
cosine_accuracy@10 | 0.8586 |
cosine_precision@1 | 0.6443 |
cosine_precision@3 | 0.26 |
cosine_precision@5 | 0.1637 |
cosine_precision@10 | 0.0859 |
cosine_recall@1 | 0.6443 |
cosine_recall@3 | 0.78 |
cosine_recall@5 | 0.8186 |
cosine_recall@10 | 0.8586 |
cosine_ndcg@10 | 0.7525 |
cosine_mrr@10 | 0.7184 |
cosine_map@100 | 0.7233 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 44.33 tokens
- max: 289 tokens
- min: 9 tokens
- mean: 20.43 tokens
- max: 46 tokens
- Samples:
positive anchor The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3).
What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?
In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes.
What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?
Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022.
How much did the marketing expenses increase in the year ended December 31, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5602 | - | - | - | - | - |
0.9746 | 12 | - | 0.7539 | 0.7548 | 0.7492 | 0.7282 | 0.6904 |
1.6244 | 20 | 0.6616 | - | - | - | - | - |
1.9492 | 24 | - | 0.7646 | 0.7630 | 0.7579 | 0.7425 | 0.7201 |
2.4365 | 30 | 0.4578 | - | - | - | - | - |
2.9239 | 36 | - | 0.7691 | 0.7636 | 0.7620 | 0.7443 | 0.7226 |
3.2487 | 40 | 0.3998 | - | - | - | - | - |
3.8985 | 48 | - | 0.7701 | 0.7631 | 0.7628 | 0.7449 | 0.7233 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.41.2
- PyTorch: 2.2.0a0+6a974be
- Accelerate: 0.27.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Siddarth-Pattnaik/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.693
- Cosine Accuracy@3 on dim 768self-reported0.823
- Cosine Accuracy@5 on dim 768self-reported0.859
- Cosine Accuracy@10 on dim 768self-reported0.907
- Cosine Precision@1 on dim 768self-reported0.693
- Cosine Precision@3 on dim 768self-reported0.274
- Cosine Precision@5 on dim 768self-reported0.172
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.693
- Cosine Recall@3 on dim 768self-reported0.823