Edit model card

hubert-japanese-base-noise-0426

This model is a fine-tuned version of rinna/japanese-hubert-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2302
  • Cer: 0.0598
  • Wer: 0.992

Model description

This model is a hiragana recognition model created by the proposed method.
The model is based on rinna's hubert base model.

Intended uses & limitations

More information needed

Training and evaluation data

Train : noisepaused_JNAS_train_0408
Test : noisepaused_JNAS_test_0408

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 12500.0
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Cer Wer
11.9556 1.0 2500 9.5354 0.9998 1.0
3.8038 2.0 5000 3.6912 0.9998 1.0
1.668 3.0 7500 1.1310 0.2733 1.0
0.688 4.0 10000 0.4272 0.1880 1.0
0.4959 5.0 12500 0.3254 0.1356 0.998
0.4275 6.0 15000 0.2856 0.1026 1.0
0.3647 7.0 17500 0.2720 0.0884 0.998
0.346 8.0 20000 0.2625 0.0848 0.998
0.3273 9.0 22500 0.2646 0.0896 0.996
0.301 10.0 25000 0.2479 0.0734 0.996
0.2871 11.0 27500 0.2466 0.0778 0.998
0.268 12.0 30000 0.2403 0.0717 0.992
0.2494 13.0 32500 0.2467 0.0705 0.994
0.2336 14.0 35000 0.2411 0.0702 0.994
0.2347 15.0 37500 0.2352 0.0662 0.994
0.2261 16.0 40000 0.2400 0.0708 0.996
0.207 17.0 42500 0.2341 0.0652 0.996
0.2018 18.0 45000 0.2340 0.0635 0.994
0.196 19.0 47500 0.2323 0.0578 0.992
0.1856 20.0 50000 0.2343 0.0625 0.992
0.1788 21.0 52500 0.2303 0.0597 0.992
0.1821 22.0 55000 0.2285 0.0596 0.99
0.1824 23.0 57500 0.2305 0.0591 0.99
0.1693 24.0 60000 0.2297 0.0598 0.99
0.1807 25.0 62500 0.2302 0.0598 0.992

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
9
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SiRoZaRuPa/hubert-japanese-base-noise-0426

Finetuned
(9)
this model

Evaluation results