Edit model card

Model Trained Using AutoTrain

  • Problem type: Sentence Transformers

Validation Metrics

loss: 9.164422988891602

validation_pearson_cosine: -0.10073561135203735

validation_spearman_cosine: -0.05129891760425771

validation_pearson_manhattan: -0.07223520049199797

validation_spearman_manhattan: -0.05129891760425771

validation_pearson_euclidean: -0.056592337170460805

validation_spearman_euclidean: -0.05129891760425771

validation_pearson_dot: -0.1007351930231386

validation_spearman_dot: -0.05129891760425771

validation_pearson_max: -0.056592337170460805

validation_spearman_max: -0.05129891760425771

runtime: 0.1267

samples_per_second: 39.454

steps_per_second: 7.891

: 3.0

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the Hugging Face Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'search_query: autotrain',
    'search_query: auto train',
    'search_query: i love autotrain',
]
embeddings = model.encode(sentences)
print(embeddings.shape)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Downloads last month
10
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ShauryaNova/autotrain-tuac9-vfsuc

Finetuned
(164)
this model

Spaces using ShauryaNova/autotrain-tuac9-vfsuc 2