Generate Cover Letter
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "ShashiVish/llama-7b-merged-int4-r512-cover-letter"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to('cuda')
job_title = "Senior Java Developer"
preferred_qualification = "3+ years of Java, Spring Boot"
hiring_company_name = "Google"
user_name = "Emily Evans"
past_working_experience= "Java Developer at XYZ for 4 years"
current_working_experience = "Senior Java Developer at ABC for 1 year"
skilleset= "Java, Spring Boot, Microservices, SQL, AWS"
qualification = "Master's in Electronics Science"
item = {'job_title': "Senior Java Developer", 'preferred_qualification': "5+ years of Java, Spring Boot",
'hiring_company_name': "Netflix", 'user_name': "Emily Evans",
'past_working_experience': "Java Developer at XYZ for 4 years",
'current_working_experience': "Senior Java Developer at ABC for 1 year",
'skilleset': "Java, Spring Boot, Microservices, SQL, AWS",
'qualification': "Master's in Computer Science"}
prompt = f"""### Instruction:
You are a smart cover letter generator. Use following Input to generate Cover letter.
### Input:
Role: item['job_title'], Preferred Qualifications: {item['preferred_qualification']}, \
Hiring Company: {item['hiring_company_name']}, User Name: {item['user_name']}, \
Past Working Experience: {item['past_working_experience']}, \
Current Working Experience: {item['current_working_experience']}, \
Skillsets: {item['skilleset']}, Qualifications: {item['qualification']}
### Cover Letter:
"""
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, top_p=0.9,temperature=0.9)
#model_response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]
model_response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0][len(prompt):]
print(model_response)
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.