NLLB-600m-nlg_Latn-to-eng_Latn
This model is a fine-tuned version of facebook/nllb-200-distilled-600M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9402
- Bleu: 45.9717
- Gen Len: 42.476
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
2.5032 | 0.49 | 500 | 1.7451 | 24.369 | 42.66 |
1.732 | 0.98 | 1000 | 1.3896 | 31.9939 | 42.304 |
1.4344 | 1.47 | 1500 | 1.2333 | 36.4344 | 42.384 |
1.3141 | 1.96 | 2000 | 1.1442 | 38.5023 | 41.96 |
1.1877 | 2.45 | 2500 | 1.0936 | 41.3292 | 42.668 |
1.1355 | 2.94 | 3000 | 1.0460 | 43.1357 | 43.22 |
1.0623 | 3.43 | 3500 | 1.0197 | 43.2339 | 42.692 |
1.0353 | 3.93 | 4000 | 1.0010 | 43.8863 | 43.012 |
0.9786 | 4.42 | 4500 | 0.9899 | 44.2478 | 43.012 |
0.9682 | 4.91 | 5000 | 0.9731 | 44.9191 | 42.816 |
0.9184 | 5.4 | 5500 | 0.9690 | 44.908 | 42.496 |
0.9208 | 5.89 | 6000 | 0.9558 | 45.5488 | 42.772 |
0.8854 | 6.38 | 6500 | 0.9561 | 45.7261 | 42.844 |
0.8815 | 6.87 | 7000 | 0.9495 | 45.1231 | 42.38 |
0.8543 | 7.36 | 7500 | 0.9475 | 45.6717 | 42.56 |
0.8462 | 7.85 | 8000 | 0.9442 | 45.9782 | 42.652 |
0.8422 | 8.34 | 8500 | 0.9436 | 45.9353 | 42.628 |
0.8323 | 8.83 | 9000 | 0.9407 | 45.7945 | 42.492 |
0.8218 | 9.32 | 9500 | 0.9405 | 46.0215 | 42.472 |
0.8226 | 9.81 | 10000 | 0.9402 | 45.9717 | 42.476 |
Framework versions
- Transformers 4.21.3
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.