distilbert-base-uncased-continued_training-medqa
This model is a fine-tuned version of Shaier/distilbert-base-uncased-continued_training-medqa on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 220
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 333 | 0.4516 |
No log | 2.0 | 666 | 0.4277 |
No log | 3.0 | 999 | 0.3734 |
No log | 4.0 | 1332 | 0.4083 |
No log | 5.0 | 1665 | 0.4134 |
No log | 6.0 | 1998 | 0.5093 |
No log | 7.0 | 2331 | 0.4639 |
0.4564 | 8.0 | 2664 | 0.5132 |
0.4564 | 9.0 | 2997 | 0.3483 |
0.4564 | 10.0 | 3330 | 0.4174 |
0.4564 | 11.0 | 3663 | 0.4975 |
0.4564 | 12.0 | 3996 | 0.4030 |
0.4564 | 13.0 | 4329 | 0.4476 |
0.4564 | 14.0 | 4662 | 0.3692 |
0.4564 | 15.0 | 4995 | 0.4474 |
0.4533 | 16.0 | 5328 | 0.3289 |
0.4533 | 17.0 | 5661 | 0.4647 |
0.4533 | 18.0 | 5994 | 0.4873 |
0.4533 | 19.0 | 6327 | 0.5323 |
0.4533 | 20.0 | 6660 | 0.4273 |
0.4533 | 21.0 | 6993 | 0.3426 |
0.4533 | 22.0 | 7326 | 0.3892 |
0.4533 | 23.0 | 7659 | 0.4297 |
0.4493 | 24.0 | 7992 | 0.4162 |
0.4493 | 25.0 | 8325 | 0.4424 |
0.4493 | 26.0 | 8658 | 0.4575 |
0.4493 | 27.0 | 8991 | 0.4192 |
0.4493 | 28.0 | 9324 | 0.4151 |
0.4493 | 29.0 | 9657 | 0.4321 |
0.4493 | 30.0 | 9990 | 0.4129 |
0.4493 | 31.0 | 10323 | 0.4869 |
0.4456 | 32.0 | 10656 | 0.4510 |
0.4456 | 33.0 | 10989 | 0.5263 |
0.4456 | 34.0 | 11322 | 0.3908 |
0.4456 | 35.0 | 11655 | 0.5016 |
0.4456 | 36.0 | 11988 | 0.4454 |
0.4456 | 37.0 | 12321 | 0.4011 |
0.4456 | 38.0 | 12654 | 0.4714 |
0.4456 | 39.0 | 12987 | 0.4972 |
0.443 | 40.0 | 13320 | 0.4200 |
0.443 | 41.0 | 13653 | 0.4659 |
0.443 | 42.0 | 13986 | 0.4758 |
0.443 | 43.0 | 14319 | 0.4509 |
0.443 | 44.0 | 14652 | 0.4211 |
0.443 | 45.0 | 14985 | 0.4007 |
0.443 | 46.0 | 15318 | 0.3205 |
0.443 | 47.0 | 15651 | 0.4479 |
0.4402 | 48.0 | 15984 | 0.4723 |
0.4402 | 49.0 | 16317 | 0.4956 |
0.4402 | 50.0 | 16650 | 0.4103 |
0.4402 | 51.0 | 16983 | 0.4234 |
0.4402 | 52.0 | 17316 | 0.4052 |
0.4402 | 53.0 | 17649 | 0.4033 |
0.4402 | 54.0 | 17982 | 0.4139 |
0.4402 | 55.0 | 18315 | 0.3618 |
0.4372 | 56.0 | 18648 | 0.5102 |
0.4372 | 57.0 | 18981 | 0.4166 |
0.4372 | 58.0 | 19314 | 0.4475 |
0.4372 | 59.0 | 19647 | 0.4259 |
0.4372 | 60.0 | 19980 | 0.4018 |
0.4372 | 61.0 | 20313 | 0.5005 |
0.4372 | 62.0 | 20646 | 0.4445 |
0.4372 | 63.0 | 20979 | 0.4280 |
0.434 | 64.0 | 21312 | 0.4533 |
0.434 | 65.0 | 21645 | 0.3672 |
0.434 | 66.0 | 21978 | 0.4726 |
0.434 | 67.0 | 22311 | 0.4084 |
0.434 | 68.0 | 22644 | 0.4508 |
0.434 | 69.0 | 22977 | 0.3746 |
0.434 | 70.0 | 23310 | 0.4703 |
0.434 | 71.0 | 23643 | 0.4789 |
0.4314 | 72.0 | 23976 | 0.3963 |
0.4314 | 73.0 | 24309 | 0.3800 |
0.4314 | 74.0 | 24642 | 0.5051 |
0.4314 | 75.0 | 24975 | 0.4245 |
0.4314 | 76.0 | 25308 | 0.4745 |
0.4314 | 77.0 | 25641 | 0.4351 |
0.4314 | 78.0 | 25974 | 0.4367 |
0.4314 | 79.0 | 26307 | 0.4200 |
0.4291 | 80.0 | 26640 | 0.4985 |
0.4291 | 81.0 | 26973 | 0.5058 |
0.4291 | 82.0 | 27306 | 0.4154 |
0.4291 | 83.0 | 27639 | 0.4837 |
0.4291 | 84.0 | 27972 | 0.3865 |
0.4291 | 85.0 | 28305 | 0.4357 |
0.4291 | 86.0 | 28638 | 0.3978 |
0.4291 | 87.0 | 28971 | 0.4413 |
0.4263 | 88.0 | 29304 | 0.4223 |
0.4263 | 89.0 | 29637 | 0.4241 |
0.4263 | 90.0 | 29970 | 0.4525 |
0.4263 | 91.0 | 30303 | 0.3895 |
0.4263 | 92.0 | 30636 | 0.4207 |
0.4263 | 93.0 | 30969 | 0.3217 |
0.4263 | 94.0 | 31302 | 0.3725 |
0.4263 | 95.0 | 31635 | 0.4354 |
0.4239 | 96.0 | 31968 | 0.4169 |
0.4239 | 97.0 | 32301 | 0.4873 |
0.4239 | 98.0 | 32634 | 0.4219 |
0.4239 | 99.0 | 32967 | 0.4984 |
0.4239 | 100.0 | 33300 | 0.4078 |
0.4239 | 101.0 | 33633 | 0.4463 |
0.4239 | 102.0 | 33966 | 0.3371 |
0.4239 | 103.0 | 34299 | 0.3896 |
0.422 | 104.0 | 34632 | 0.4743 |
0.422 | 105.0 | 34965 | 0.4931 |
0.422 | 106.0 | 35298 | 0.3574 |
0.422 | 107.0 | 35631 | 0.4127 |
0.422 | 108.0 | 35964 | 0.3892 |
0.422 | 109.0 | 36297 | 0.3881 |
0.422 | 110.0 | 36630 | 0.4221 |
0.422 | 111.0 | 36963 | 0.3924 |
0.4204 | 112.0 | 37296 | 0.4067 |
0.4204 | 113.0 | 37629 | 0.4357 |
0.4204 | 114.0 | 37962 | 0.4175 |
0.4204 | 115.0 | 38295 | 0.4424 |
0.4204 | 116.0 | 38628 | 0.3925 |
0.4204 | 117.0 | 38961 | 0.4693 |
0.4204 | 118.0 | 39294 | 0.3503 |
0.4204 | 119.0 | 39627 | 0.4761 |
0.4183 | 120.0 | 39960 | 0.3816 |
0.4183 | 121.0 | 40293 | 0.3903 |
0.4183 | 122.0 | 40626 | 0.3535 |
0.4183 | 123.0 | 40959 | 0.4388 |
0.4183 | 124.0 | 41292 | 0.4519 |
0.4183 | 125.0 | 41625 | 0.4241 |
0.4183 | 126.0 | 41958 | 0.4085 |
0.4183 | 127.0 | 42291 | 0.4836 |
0.4168 | 128.0 | 42624 | 0.4101 |
0.4168 | 129.0 | 42957 | 0.4749 |
0.4168 | 130.0 | 43290 | 0.4022 |
0.4168 | 131.0 | 43623 | 0.4861 |
0.4168 | 132.0 | 43956 | 0.4376 |
0.4168 | 133.0 | 44289 | 0.4597 |
0.4168 | 134.0 | 44622 | 0.4154 |
0.4168 | 135.0 | 44955 | 0.4431 |
0.415 | 136.0 | 45288 | 0.4887 |
0.415 | 137.0 | 45621 | 0.4229 |
0.415 | 138.0 | 45954 | 0.3997 |
0.415 | 139.0 | 46287 | 0.4185 |
0.415 | 140.0 | 46620 | 0.4633 |
0.415 | 141.0 | 46953 | 0.4061 |
0.415 | 142.0 | 47286 | 0.4604 |
0.415 | 143.0 | 47619 | 0.4047 |
0.4139 | 144.0 | 47952 | 0.4272 |
0.4139 | 145.0 | 48285 | 0.4783 |
0.4139 | 146.0 | 48618 | 0.3954 |
0.4139 | 147.0 | 48951 | 0.4501 |
0.4139 | 148.0 | 49284 | 0.4941 |
0.4139 | 149.0 | 49617 | 0.4112 |
0.4139 | 150.0 | 49950 | 0.4582 |
0.4139 | 151.0 | 50283 | 0.4361 |
0.4126 | 152.0 | 50616 | 0.3535 |
0.4126 | 153.0 | 50949 | 0.3797 |
0.4126 | 154.0 | 51282 | 0.4080 |
0.4126 | 155.0 | 51615 | 0.4049 |
0.4126 | 156.0 | 51948 | 0.4255 |
0.4126 | 157.0 | 52281 | 0.4303 |
0.4126 | 158.0 | 52614 | 0.4950 |
0.4126 | 159.0 | 52947 | 0.3721 |
0.4114 | 160.0 | 53280 | 0.2861 |
0.4114 | 161.0 | 53613 | 0.3775 |
0.4114 | 162.0 | 53946 | 0.4274 |
0.4114 | 163.0 | 54279 | 0.3904 |
0.4114 | 164.0 | 54612 | 0.4687 |
0.4114 | 165.0 | 54945 | 0.4013 |
0.4114 | 166.0 | 55278 | 0.4760 |
0.4114 | 167.0 | 55611 | 0.3554 |
0.4104 | 168.0 | 55944 | 0.5193 |
0.4104 | 169.0 | 56277 | 0.4476 |
0.4104 | 170.0 | 56610 | 0.5011 |
0.4104 | 171.0 | 56943 | 0.4441 |
0.4104 | 172.0 | 57276 | 0.4457 |
0.4104 | 173.0 | 57609 | 0.3792 |
0.4104 | 174.0 | 57942 | 0.5116 |
0.4104 | 175.0 | 58275 | 0.4249 |
0.4097 | 176.0 | 58608 | 0.3804 |
0.4097 | 177.0 | 58941 | 0.3886 |
0.4097 | 178.0 | 59274 | 0.4420 |
0.4097 | 179.0 | 59607 | 0.3573 |
0.4097 | 180.0 | 59940 | 0.3635 |
0.4097 | 181.0 | 60273 | 0.4596 |
0.4097 | 182.0 | 60606 | 0.3674 |
0.4097 | 183.0 | 60939 | 0.3869 |
0.409 | 184.0 | 61272 | 0.3909 |
0.409 | 185.0 | 61605 | 0.4339 |
0.409 | 186.0 | 61938 | 0.4475 |
0.409 | 187.0 | 62271 | 0.3218 |
0.409 | 188.0 | 62604 | 0.3771 |
0.409 | 189.0 | 62937 | 0.4007 |
0.409 | 190.0 | 63270 | 0.4520 |
0.409 | 191.0 | 63603 | 0.3980 |
0.4077 | 192.0 | 63936 | 0.4572 |
0.4077 | 193.0 | 64269 | 0.3952 |
0.4077 | 194.0 | 64602 | 0.4384 |
0.4077 | 195.0 | 64935 | 0.4795 |
0.4077 | 196.0 | 65268 | 0.3743 |
0.4077 | 197.0 | 65601 | 0.4445 |
0.4077 | 198.0 | 65934 | 0.3925 |
0.4077 | 199.0 | 66267 | 0.4564 |
0.4075 | 200.0 | 66600 | 0.4580 |
0.4075 | 201.0 | 66933 | 0.4446 |
0.4075 | 202.0 | 67266 | 0.4289 |
0.4075 | 203.0 | 67599 | 0.3722 |
0.4075 | 204.0 | 67932 | 0.4810 |
0.4075 | 205.0 | 68265 | 0.4004 |
0.4075 | 206.0 | 68598 | 0.4219 |
0.4075 | 207.0 | 68931 | 0.3926 |
0.407 | 208.0 | 69264 | 0.6043 |
0.407 | 209.0 | 69597 | 0.3835 |
0.407 | 210.0 | 69930 | 0.3791 |
0.407 | 211.0 | 70263 | 0.4152 |
0.407 | 212.0 | 70596 | 0.3654 |
0.407 | 213.0 | 70929 | 0.4434 |
0.407 | 214.0 | 71262 | 0.3613 |
0.407 | 215.0 | 71595 | 0.5103 |
0.4069 | 216.0 | 71928 | 0.3733 |
0.4069 | 217.0 | 72261 | 0.4881 |
0.4069 | 218.0 | 72594 | 0.3375 |
0.4069 | 219.0 | 72927 | 0.4766 |
0.4069 | 220.0 | 73260 | 0.4604 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.11.0
- Downloads last month
- 41
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.