Edit model card

distilbert-base-uncased__subj__train-8-7

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2766
  • Accuracy: 0.8845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7044 1.0 3 0.6909 0.5
0.6678 2.0 6 0.6901 0.5
0.6336 3.0 9 0.6807 0.5
0.5926 4.0 12 0.6726 0.5
0.5221 5.0 15 0.6648 0.5
0.4573 6.0 18 0.6470 0.5
0.4177 7.0 21 0.6251 0.5
0.3252 8.0 24 0.5994 0.5
0.2831 9.0 27 0.5529 0.5
0.213 10.0 30 0.5078 0.75
0.1808 11.0 33 0.4521 1.0
0.1355 12.0 36 0.3996 1.0
0.1027 13.0 39 0.3557 1.0
0.0862 14.0 42 0.3121 1.0
0.0682 15.0 45 0.2828 1.0
0.0517 16.0 48 0.2603 1.0
0.0466 17.0 51 0.2412 1.0
0.038 18.0 54 0.2241 1.0
0.0276 19.0 57 0.2096 1.0
0.0246 20.0 60 0.1969 1.0
0.0249 21.0 63 0.1859 1.0
0.0201 22.0 66 0.1770 1.0
0.018 23.0 69 0.1703 1.0
0.0164 24.0 72 0.1670 1.0
0.0172 25.0 75 0.1639 1.0
0.0135 26.0 78 0.1604 1.0
0.014 27.0 81 0.1585 1.0
0.0108 28.0 84 0.1569 1.0
0.0116 29.0 87 0.1549 1.0
0.0111 30.0 90 0.1532 1.0
0.0113 31.0 93 0.1513 1.0
0.0104 32.0 96 0.1503 1.0
0.01 33.0 99 0.1490 1.0
0.0079 34.0 102 0.1479 1.0
0.0097 35.0 105 0.1466 1.0
0.0112 36.0 108 0.1458 1.0
0.0091 37.0 111 0.1457 1.0
0.0098 38.0 114 0.1454 1.0
0.0076 39.0 117 0.1451 1.0
0.0085 40.0 120 0.1448 1.0
0.0079 41.0 123 0.1445 1.0
0.0096 42.0 126 0.1440 1.0
0.0081 43.0 129 0.1430 1.0
0.0083 44.0 132 0.1424 1.0
0.0088 45.0 135 0.1418 1.0
0.0077 46.0 138 0.1414 1.0
0.0073 47.0 141 0.1413 1.0
0.0084 48.0 144 0.1412 1.0
0.0072 49.0 147 0.1411 1.0
0.0077 50.0 150 0.1411 1.0

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.