distilbert-base-uncased__subj__train-8-7
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2766
- Accuracy: 0.8845
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7044 | 1.0 | 3 | 0.6909 | 0.5 |
0.6678 | 2.0 | 6 | 0.6901 | 0.5 |
0.6336 | 3.0 | 9 | 0.6807 | 0.5 |
0.5926 | 4.0 | 12 | 0.6726 | 0.5 |
0.5221 | 5.0 | 15 | 0.6648 | 0.5 |
0.4573 | 6.0 | 18 | 0.6470 | 0.5 |
0.4177 | 7.0 | 21 | 0.6251 | 0.5 |
0.3252 | 8.0 | 24 | 0.5994 | 0.5 |
0.2831 | 9.0 | 27 | 0.5529 | 0.5 |
0.213 | 10.0 | 30 | 0.5078 | 0.75 |
0.1808 | 11.0 | 33 | 0.4521 | 1.0 |
0.1355 | 12.0 | 36 | 0.3996 | 1.0 |
0.1027 | 13.0 | 39 | 0.3557 | 1.0 |
0.0862 | 14.0 | 42 | 0.3121 | 1.0 |
0.0682 | 15.0 | 45 | 0.2828 | 1.0 |
0.0517 | 16.0 | 48 | 0.2603 | 1.0 |
0.0466 | 17.0 | 51 | 0.2412 | 1.0 |
0.038 | 18.0 | 54 | 0.2241 | 1.0 |
0.0276 | 19.0 | 57 | 0.2096 | 1.0 |
0.0246 | 20.0 | 60 | 0.1969 | 1.0 |
0.0249 | 21.0 | 63 | 0.1859 | 1.0 |
0.0201 | 22.0 | 66 | 0.1770 | 1.0 |
0.018 | 23.0 | 69 | 0.1703 | 1.0 |
0.0164 | 24.0 | 72 | 0.1670 | 1.0 |
0.0172 | 25.0 | 75 | 0.1639 | 1.0 |
0.0135 | 26.0 | 78 | 0.1604 | 1.0 |
0.014 | 27.0 | 81 | 0.1585 | 1.0 |
0.0108 | 28.0 | 84 | 0.1569 | 1.0 |
0.0116 | 29.0 | 87 | 0.1549 | 1.0 |
0.0111 | 30.0 | 90 | 0.1532 | 1.0 |
0.0113 | 31.0 | 93 | 0.1513 | 1.0 |
0.0104 | 32.0 | 96 | 0.1503 | 1.0 |
0.01 | 33.0 | 99 | 0.1490 | 1.0 |
0.0079 | 34.0 | 102 | 0.1479 | 1.0 |
0.0097 | 35.0 | 105 | 0.1466 | 1.0 |
0.0112 | 36.0 | 108 | 0.1458 | 1.0 |
0.0091 | 37.0 | 111 | 0.1457 | 1.0 |
0.0098 | 38.0 | 114 | 0.1454 | 1.0 |
0.0076 | 39.0 | 117 | 0.1451 | 1.0 |
0.0085 | 40.0 | 120 | 0.1448 | 1.0 |
0.0079 | 41.0 | 123 | 0.1445 | 1.0 |
0.0096 | 42.0 | 126 | 0.1440 | 1.0 |
0.0081 | 43.0 | 129 | 0.1430 | 1.0 |
0.0083 | 44.0 | 132 | 0.1424 | 1.0 |
0.0088 | 45.0 | 135 | 0.1418 | 1.0 |
0.0077 | 46.0 | 138 | 0.1414 | 1.0 |
0.0073 | 47.0 | 141 | 0.1413 | 1.0 |
0.0084 | 48.0 | 144 | 0.1412 | 1.0 |
0.0072 | 49.0 | 147 | 0.1411 | 1.0 |
0.0077 | 50.0 | 150 | 0.1411 | 1.0 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.