Edit model card

distilbert-base-uncased__sst2__train-16-4

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1501
  • Accuracy: 0.6387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7043 1.0 7 0.7139 0.2857
0.68 2.0 14 0.7398 0.2857
0.641 3.0 21 0.7723 0.2857
0.5424 4.0 28 0.8391 0.2857
0.5988 5.0 35 0.7761 0.2857
0.3698 6.0 42 0.7707 0.4286
0.3204 7.0 49 0.8290 0.4286
0.2882 8.0 56 0.6551 0.5714
0.1512 9.0 63 0.5652 0.5714
0.1302 10.0 70 0.5278 0.5714
0.1043 11.0 77 0.4987 0.7143
0.0272 12.0 84 0.5278 0.5714
0.0201 13.0 91 0.5307 0.5714
0.0129 14.0 98 0.5382 0.5714
0.0117 15.0 105 0.5227 0.5714
0.0094 16.0 112 0.5066 0.7143
0.0104 17.0 119 0.4869 0.7143
0.0069 18.0 126 0.4786 0.7143
0.0062 19.0 133 0.4707 0.7143
0.0065 20.0 140 0.4669 0.7143
0.0051 21.0 147 0.4686 0.7143
0.0049 22.0 154 0.4784 0.7143
0.0046 23.0 161 0.4839 0.7143
0.0039 24.0 168 0.4823 0.7143
0.0044 25.0 175 0.4791 0.7143
0.0037 26.0 182 0.4778 0.7143
0.0038 27.0 189 0.4770 0.7143
0.0036 28.0 196 0.4750 0.7143
0.0031 29.0 203 0.4766 0.7143
0.0031 30.0 210 0.4754 0.7143

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.