Edit model card

distilbert-base-uncased__sst2__train-16-3

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7887
  • Accuracy: 0.6458

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6928 1.0 7 0.6973 0.4286
0.675 2.0 14 0.7001 0.4286
0.6513 3.0 21 0.6959 0.4286
0.5702 4.0 28 0.6993 0.4286
0.5389 5.0 35 0.6020 0.7143
0.3386 6.0 42 0.5326 0.5714
0.2596 7.0 49 0.4943 0.7143
0.1633 8.0 56 0.3589 0.8571
0.1086 9.0 63 0.2924 0.8571
0.0641 10.0 70 0.2687 0.8571
0.0409 11.0 77 0.2202 0.8571
0.0181 12.0 84 0.2445 0.8571
0.0141 13.0 91 0.2885 0.8571
0.0108 14.0 98 0.3069 0.8571
0.009 15.0 105 0.3006 0.8571
0.0084 16.0 112 0.2834 0.8571
0.0088 17.0 119 0.2736 0.8571
0.0062 18.0 126 0.2579 0.8571
0.0058 19.0 133 0.2609 0.8571
0.0057 20.0 140 0.2563 0.8571
0.0049 21.0 147 0.2582 0.8571

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.