Edit model card

distilbert-base-uncased__hate_speech_offensive__train-32-4

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7384
  • Accuracy: 0.724

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1013 1.0 19 1.0733 0.55
1.0226 2.0 38 1.0064 0.65
0.8539 3.0 57 0.8758 0.75
0.584 4.0 76 0.6941 0.7
0.2813 5.0 95 0.5151 0.7
0.1122 6.0 114 0.4351 0.8
0.0432 7.0 133 0.4896 0.85
0.0199 8.0 152 0.5391 0.85
0.0126 9.0 171 0.5200 0.85
0.0085 10.0 190 0.5622 0.85
0.0069 11.0 209 0.5950 0.85
0.0058 12.0 228 0.6015 0.85
0.0053 13.0 247 0.6120 0.85
0.0042 14.0 266 0.6347 0.85
0.0039 15.0 285 0.6453 0.85
0.0034 16.0 304 0.6660 0.85

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.