deprem_satellite_semantic_xview2_large_2

This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.9892
  • eval_mean_iou: 0.3093
  • eval_mean_accuracy: 0.3576
  • eval_overall_accuracy: 0.9646
  • eval_accuracy_background: 0.9860
  • eval_accuracy_nodamage: 0.8022
  • eval_accuracy_minordamaged: 0.0
  • eval_accuracy_majordamaged: 0.0
  • eval_accuracy_destroyed: 0.0
  • eval_iou_background: 0.9677
  • eval_iou_nodamage: 0.5789
  • eval_iou_minordamaged: 0.0
  • eval_iou_majordamaged: 0.0
  • eval_iou_destroyed: 0.0
  • eval_runtime: 200.8095
  • eval_samples_per_second: 4.646
  • eval_steps_per_second: 4.646
  • epoch: 19.3
  • step: 27000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
13
Inference API
Unable to determine this model’s pipeline type. Check the docs .