File size: 1,548 Bytes
2640d9a
d9282f4
2640d9a
 
 
0058b40
d56a43c
2640d9a
 
 
034fc99
aff6522
2640d9a
d9282f4
f5d1dee
 
 
8cf0b1b
f5d1dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---

tags:
- segmentation
- dentalimaging
- medicalimaging
- image-segmentation
metrics:
- f1
- accuracy
datasets:
- SerdarHelli/SegmentationOfTeethPanoramicXRayImages
---

# Semantic-Segmentation-of-Teeth-in-Panoramic-X-ray-Image
The aim of this study is automatic semantic segmentation and measurement total length of teeth in one-shot panoramic x-ray image by using deep learning method with U-Net Model and binary image analysis in order to provide diagnostic information for the management of dental disorders, diseases, and conditions. 

 [***Github Link***](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)


***Original Dataset***

DATASET ref - 	H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015

[Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1)
### Paper  

[The authors of this article are Selahattin Serdar Helli and Andaç Hamamcı  with the Department of Biomedical Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey](https://dergipark.org.tr/tr/pub/dubited/issue/68307/950568) 

### BibTeX Entry and Citation Info
 ```
@article{helli10tooth,
  title={Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing},
  author={HELL{\.I}, Serdar and HAMAMCI, Anda{\c{c}}},
  journal={D{\"u}zce {\"U}niversitesi Bilim ve Teknoloji Dergisi},
  volume={10},
  number={1},
  pages={39--50}
}
 ```