SentenceTransformer based on neuralmind/bert-large-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-large-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e5-lr3e-05-09-01-2025")
# Run inference
sentences = [
'varal chao retratilr',
'suplemento',
'servico reparo eletronico',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval-similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.947 |
spearman_cosine | 0.8542 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 20,237 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.71 tokens
- max: 18 tokens
- min: 3 tokens
- mean: 6.1 tokens
- max: 11 tokens
- min: 0.1
- mean: 0.56
- max: 1.0
- Samples:
text1 text2 label poltrona reclinavel confortavel
livro material literario
0.1
contratar servico paisagismo
servico area educacao
0.1
aula canto coral
servico area educacao
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,249 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.76 tokens
- max: 17 tokens
- min: 3 tokens
- mean: 6.11 tokens
- max: 11 tokens
- min: 0.1
- mean: 0.55
- max: 1.0
- Samples:
text1 text2 label brinquedo pet
produto pet animal domestico
1.0
tapete sala
produto pet animal domestico
0.1
livro aventura
instrumento musical
0.1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 3e-05weight_decay
: 0.1num_train_epochs
: 5warmup_ratio
: 0.1warmup_steps
: 252fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.1adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 252log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
---|---|---|---|---|
0.0079 | 5 | 0.2353 | - | - |
0.0158 | 10 | 0.2114 | - | - |
0.0237 | 15 | 0.2089 | - | - |
0.0316 | 20 | 0.1935 | - | - |
0.0395 | 25 | 0.1799 | - | - |
0.0474 | 30 | 0.178 | - | - |
0.0553 | 35 | 0.1686 | - | - |
0.0632 | 40 | 0.1602 | - | - |
0.0711 | 45 | 0.1502 | - | - |
0.0790 | 50 | 0.1446 | - | - |
0.0869 | 55 | 0.1399 | - | - |
0.0948 | 60 | 0.1318 | - | - |
0.1027 | 65 | 0.1251 | - | - |
0.1106 | 70 | 0.1035 | - | - |
0.1185 | 75 | 0.1064 | - | - |
0.1264 | 80 | 0.0886 | - | - |
0.1343 | 85 | 0.108 | - | - |
0.1422 | 90 | 0.0877 | - | - |
0.1501 | 95 | 0.1023 | - | - |
0.1580 | 100 | 0.0868 | - | - |
0.1659 | 105 | 0.0932 | - | - |
0.1738 | 110 | 0.0678 | - | - |
0.1817 | 115 | 0.0748 | - | - |
0.1896 | 120 | 0.0774 | - | - |
0.1975 | 125 | 0.0758 | - | - |
0.2054 | 130 | 0.0576 | - | - |
0.2133 | 135 | 0.0604 | - | - |
0.2212 | 140 | 0.0569 | - | - |
0.2291 | 145 | 0.0647 | - | - |
0.2370 | 150 | 0.0632 | - | - |
0.2449 | 155 | 0.0619 | - | - |
0.2528 | 160 | 0.0543 | - | - |
0.2607 | 165 | 0.0536 | - | - |
0.2686 | 170 | 0.0707 | - | - |
0.2765 | 175 | 0.0528 | - | - |
0.2844 | 180 | 0.0613 | - | - |
0.2923 | 185 | 0.0536 | - | - |
0.3002 | 190 | 0.0573 | - | - |
0.3081 | 195 | 0.0483 | - | - |
0.3160 | 200 | 0.0553 | - | - |
0.3239 | 205 | 0.0547 | - | - |
0.3318 | 210 | 0.0632 | - | - |
0.3397 | 215 | 0.0445 | - | - |
0.3476 | 220 | 0.0763 | - | - |
0.3555 | 225 | 0.0566 | - | - |
0.3633 | 230 | 0.0527 | - | - |
0.3712 | 235 | 0.0554 | - | - |
0.3791 | 240 | 0.0445 | - | - |
0.3870 | 245 | 0.0456 | - | - |
0.3949 | 250 | 0.0504 | - | - |
0.4028 | 255 | 0.063 | - | - |
0.4107 | 260 | 0.0441 | - | - |
0.4186 | 265 | 0.053 | - | - |
0.4265 | 270 | 0.0494 | - | - |
0.4344 | 275 | 0.0394 | - | - |
0.4423 | 280 | 0.0565 | - | - |
0.4502 | 285 | 0.0431 | - | - |
0.4581 | 290 | 0.0368 | - | - |
0.4660 | 295 | 0.0392 | - | - |
0.4739 | 300 | 0.0496 | 0.0412 | 0.8389 |
0.4818 | 305 | 0.0482 | - | - |
0.4897 | 310 | 0.048 | - | - |
0.4976 | 315 | 0.0373 | - | - |
0.5055 | 320 | 0.0279 | - | - |
0.5134 | 325 | 0.0447 | - | - |
0.5213 | 330 | 0.0412 | - | - |
0.5292 | 335 | 0.0338 | - | - |
0.5371 | 340 | 0.0468 | - | - |
0.5450 | 345 | 0.0508 | - | - |
0.5529 | 350 | 0.0447 | - | - |
0.5608 | 355 | 0.0407 | - | - |
0.5687 | 360 | 0.042 | - | - |
0.5766 | 365 | 0.0452 | - | - |
0.5845 | 370 | 0.0346 | - | - |
0.5924 | 375 | 0.0506 | - | - |
0.6003 | 380 | 0.0367 | - | - |
0.6082 | 385 | 0.0413 | - | - |
0.6161 | 390 | 0.0523 | - | - |
0.6240 | 395 | 0.037 | - | - |
0.6319 | 400 | 0.0497 | - | - |
0.6398 | 405 | 0.0375 | - | - |
0.6477 | 410 | 0.045 | - | - |
0.6556 | 415 | 0.0346 | - | - |
0.6635 | 420 | 0.0428 | - | - |
0.6714 | 425 | 0.022 | - | - |
0.6793 | 430 | 0.0422 | - | - |
0.6872 | 435 | 0.0514 | - | - |
0.6951 | 440 | 0.0454 | - | - |
0.7030 | 445 | 0.0418 | - | - |
0.7109 | 450 | 0.0587 | - | - |
0.7188 | 455 | 0.0477 | - | - |
0.7267 | 460 | 0.0515 | - | - |
0.7346 | 465 | 0.0466 | - | - |
0.7425 | 470 | 0.0331 | - | - |
0.7504 | 475 | 0.0339 | - | - |
0.7583 | 480 | 0.0367 | - | - |
0.7662 | 485 | 0.0342 | - | - |
0.7741 | 490 | 0.0343 | - | - |
0.7820 | 495 | 0.0423 | - | - |
0.7899 | 500 | 0.0548 | - | - |
0.7978 | 505 | 0.0393 | - | - |
0.8057 | 510 | 0.0371 | - | - |
0.8136 | 515 | 0.0222 | - | - |
0.8215 | 520 | 0.0411 | - | - |
0.8294 | 525 | 0.0321 | - | - |
0.8373 | 530 | 0.0408 | - | - |
0.8452 | 535 | 0.0296 | - | - |
0.8531 | 540 | 0.0306 | - | - |
0.8610 | 545 | 0.0329 | - | - |
0.8689 | 550 | 0.034 | - | - |
0.8768 | 555 | 0.0482 | - | - |
0.8847 | 560 | 0.0376 | - | - |
0.8926 | 565 | 0.054 | - | - |
0.9005 | 570 | 0.0345 | - | - |
0.9084 | 575 | 0.0335 | - | - |
0.9163 | 580 | 0.0506 | - | - |
0.9242 | 585 | 0.0444 | - | - |
0.9321 | 590 | 0.0276 | - | - |
0.9400 | 595 | 0.0343 | - | - |
0.9479 | 600 | 0.0393 | 0.0313 | 0.8469 |
0.9558 | 605 | 0.0288 | - | - |
0.9637 | 610 | 0.0328 | - | - |
0.9716 | 615 | 0.0256 | - | - |
0.9795 | 620 | 0.0273 | - | - |
0.9874 | 625 | 0.0361 | - | - |
0.9953 | 630 | 0.0298 | - | - |
1.0032 | 635 | 0.0213 | - | - |
1.0111 | 640 | 0.0319 | - | - |
1.0190 | 645 | 0.0185 | - | - |
1.0269 | 650 | 0.0296 | - | - |
1.0348 | 655 | 0.0186 | - | - |
1.0427 | 660 | 0.0246 | - | - |
1.0506 | 665 | 0.0286 | - | - |
1.0585 | 670 | 0.0252 | - | - |
1.0664 | 675 | 0.0257 | - | - |
1.0742 | 680 | 0.0334 | - | - |
1.0821 | 685 | 0.0172 | - | - |
1.0900 | 690 | 0.0225 | - | - |
1.0979 | 695 | 0.0206 | - | - |
1.1058 | 700 | 0.0271 | - | - |
1.1137 | 705 | 0.0224 | - | - |
1.1216 | 710 | 0.0148 | - | - |
1.1295 | 715 | 0.0215 | - | - |
1.1374 | 720 | 0.0373 | - | - |
1.1453 | 725 | 0.0204 | - | - |
1.1532 | 730 | 0.0191 | - | - |
1.1611 | 735 | 0.0224 | - | - |
1.1690 | 740 | 0.0243 | - | - |
1.1769 | 745 | 0.0401 | - | - |
1.1848 | 750 | 0.0196 | - | - |
1.1927 | 755 | 0.0358 | - | - |
1.2006 | 760 | 0.0399 | - | - |
1.2085 | 765 | 0.0169 | - | - |
1.2164 | 770 | 0.0173 | - | - |
1.2243 | 775 | 0.0252 | - | - |
1.2322 | 780 | 0.0342 | - | - |
1.2401 | 785 | 0.0287 | - | - |
1.2480 | 790 | 0.0227 | - | - |
1.2559 | 795 | 0.012 | - | - |
1.2638 | 800 | 0.0259 | - | - |
1.2717 | 805 | 0.0254 | - | - |
1.2796 | 810 | 0.0363 | - | - |
1.2875 | 815 | 0.0256 | - | - |
1.2954 | 820 | 0.0264 | - | - |
1.3033 | 825 | 0.0209 | - | - |
1.3112 | 830 | 0.0326 | - | - |
1.3191 | 835 | 0.0193 | - | - |
1.3270 | 840 | 0.0234 | - | - |
1.3349 | 845 | 0.0551 | - | - |
1.3428 | 850 | 0.0283 | - | - |
1.3507 | 855 | 0.0188 | - | - |
1.3586 | 860 | 0.0224 | - | - |
1.3665 | 865 | 0.0249 | - | - |
1.3744 | 870 | 0.0239 | - | - |
1.3823 | 875 | 0.0276 | - | - |
1.3902 | 880 | 0.0222 | - | - |
1.3981 | 885 | 0.0246 | - | - |
1.4060 | 890 | 0.0269 | - | - |
1.4139 | 895 | 0.0194 | - | - |
1.4218 | 900 | 0.0241 | 0.0272 | 0.8494 |
1.4297 | 905 | 0.0204 | - | - |
1.4376 | 910 | 0.019 | - | - |
1.4455 | 915 | 0.0362 | - | - |
1.4534 | 920 | 0.015 | - | - |
1.4613 | 925 | 0.0211 | - | - |
1.4692 | 930 | 0.0257 | - | - |
1.4771 | 935 | 0.019 | - | - |
1.4850 | 940 | 0.029 | - | - |
1.4929 | 945 | 0.0213 | - | - |
1.5008 | 950 | 0.0174 | - | - |
1.5087 | 955 | 0.0141 | - | - |
1.5166 | 960 | 0.0114 | - | - |
1.5245 | 965 | 0.0325 | - | - |
1.5324 | 970 | 0.018 | - | - |
1.5403 | 975 | 0.0167 | - | - |
1.5482 | 980 | 0.0156 | - | - |
1.5561 | 985 | 0.023 | - | - |
1.5640 | 990 | 0.0208 | - | - |
1.5719 | 995 | 0.0187 | - | - |
1.5798 | 1000 | 0.0202 | - | - |
1.5877 | 1005 | 0.0148 | - | - |
1.5956 | 1010 | 0.0248 | - | - |
1.6035 | 1015 | 0.015 | - | - |
1.6114 | 1020 | 0.0265 | - | - |
1.6193 | 1025 | 0.0415 | - | - |
1.6272 | 1030 | 0.0233 | - | - |
1.6351 | 1035 | 0.0212 | - | - |
1.6430 | 1040 | 0.0248 | - | - |
1.6509 | 1045 | 0.0236 | - | - |
1.6588 | 1050 | 0.0147 | - | - |
1.6667 | 1055 | 0.0242 | - | - |
1.6746 | 1060 | 0.0415 | - | - |
1.6825 | 1065 | 0.0249 | - | - |
1.6904 | 1070 | 0.0239 | - | - |
1.6983 | 1075 | 0.0182 | - | - |
1.7062 | 1080 | 0.0155 | - | - |
1.7141 | 1085 | 0.0352 | - | - |
1.7220 | 1090 | 0.0269 | - | - |
1.7299 | 1095 | 0.0182 | - | - |
1.7378 | 1100 | 0.0271 | - | - |
1.7457 | 1105 | 0.0168 | - | - |
1.7536 | 1110 | 0.0222 | - | - |
1.7615 | 1115 | 0.0253 | - | - |
1.7694 | 1120 | 0.0249 | - | - |
1.7773 | 1125 | 0.025 | - | - |
1.7852 | 1130 | 0.0253 | - | - |
1.7930 | 1135 | 0.0197 | - | - |
1.8009 | 1140 | 0.0205 | - | - |
1.8088 | 1145 | 0.0289 | - | - |
1.8167 | 1150 | 0.0218 | - | - |
1.8246 | 1155 | 0.0241 | - | - |
1.8325 | 1160 | 0.0191 | - | - |
1.8404 | 1165 | 0.0199 | - | - |
1.8483 | 1170 | 0.028 | - | - |
1.8562 | 1175 | 0.0135 | - | - |
1.8641 | 1180 | 0.0218 | - | - |
1.8720 | 1185 | 0.0226 | - | - |
1.8799 | 1190 | 0.0227 | - | - |
1.8878 | 1195 | 0.0148 | - | - |
1.8957 | 1200 | 0.0327 | 0.0255 | 0.8500 |
1.9036 | 1205 | 0.025 | - | - |
1.9115 | 1210 | 0.0174 | - | - |
1.9194 | 1215 | 0.0155 | - | - |
1.9273 | 1220 | 0.0169 | - | - |
1.9352 | 1225 | 0.0163 | - | - |
1.9431 | 1230 | 0.0142 | - | - |
1.9510 | 1235 | 0.012 | - | - |
1.9589 | 1240 | 0.015 | - | - |
1.9668 | 1245 | 0.0356 | - | - |
1.9747 | 1250 | 0.0238 | - | - |
1.9826 | 1255 | 0.0199 | - | - |
1.9905 | 1260 | 0.0167 | - | - |
1.9984 | 1265 | 0.0339 | - | - |
2.0063 | 1270 | 0.0107 | - | - |
2.0142 | 1275 | 0.0121 | - | - |
2.0221 | 1280 | 0.0171 | - | - |
2.0300 | 1285 | 0.0128 | - | - |
2.0379 | 1290 | 0.0123 | - | - |
2.0458 | 1295 | 0.0156 | - | - |
2.0537 | 1300 | 0.0186 | - | - |
2.0616 | 1305 | 0.0142 | - | - |
2.0695 | 1310 | 0.0086 | - | - |
2.0774 | 1315 | 0.0074 | - | - |
2.0853 | 1320 | 0.0098 | - | - |
2.0932 | 1325 | 0.0213 | - | - |
2.1011 | 1330 | 0.0117 | - | - |
2.1090 | 1335 | 0.0123 | - | - |
2.1169 | 1340 | 0.0092 | - | - |
2.1248 | 1345 | 0.011 | - | - |
2.1327 | 1350 | 0.0127 | - | - |
2.1406 | 1355 | 0.0133 | - | - |
2.1485 | 1360 | 0.0127 | - | - |
2.1564 | 1365 | 0.0133 | - | - |
2.1643 | 1370 | 0.0144 | - | - |
2.1722 | 1375 | 0.0165 | - | - |
2.1801 | 1380 | 0.0106 | - | - |
2.1880 | 1385 | 0.0167 | - | - |
2.1959 | 1390 | 0.0124 | - | - |
2.2038 | 1395 | 0.0107 | - | - |
2.2117 | 1400 | 0.0173 | - | - |
2.2196 | 1405 | 0.0165 | - | - |
2.2275 | 1410 | 0.0179 | - | - |
2.2354 | 1415 | 0.0131 | - | - |
2.2433 | 1420 | 0.0118 | - | - |
2.2512 | 1425 | 0.0094 | - | - |
2.2591 | 1430 | 0.0114 | - | - |
2.2670 | 1435 | 0.0251 | - | - |
2.2749 | 1440 | 0.0293 | - | - |
2.2828 | 1445 | 0.0108 | - | - |
2.2907 | 1450 | 0.0099 | - | - |
2.2986 | 1455 | 0.0178 | - | - |
2.3065 | 1460 | 0.0264 | - | - |
2.3144 | 1465 | 0.0091 | - | - |
2.3223 | 1470 | 0.0118 | - | - |
2.3302 | 1475 | 0.014 | - | - |
2.3381 | 1480 | 0.0209 | - | - |
2.3460 | 1485 | 0.0068 | - | - |
2.3539 | 1490 | 0.012 | - | - |
2.3618 | 1495 | 0.0105 | - | - |
2.3697 | 1500 | 0.0149 | 0.0250 | 0.8494 |
2.3776 | 1505 | 0.0114 | - | - |
2.3855 | 1510 | 0.0179 | - | - |
2.3934 | 1515 | 0.0136 | - | - |
2.4013 | 1520 | 0.0096 | - | - |
2.4092 | 1525 | 0.0131 | - | - |
2.4171 | 1530 | 0.0137 | - | - |
2.4250 | 1535 | 0.0194 | - | - |
2.4329 | 1540 | 0.013 | - | - |
2.4408 | 1545 | 0.0289 | - | - |
2.4487 | 1550 | 0.0074 | - | - |
2.4566 | 1555 | 0.0142 | - | - |
2.4645 | 1560 | 0.0041 | - | - |
2.4724 | 1565 | 0.0138 | - | - |
2.4803 | 1570 | 0.0163 | - | - |
2.4882 | 1575 | 0.0259 | - | - |
2.4961 | 1580 | 0.0127 | - | - |
2.5039 | 1585 | 0.0056 | - | - |
2.5118 | 1590 | 0.0101 | - | - |
2.5197 | 1595 | 0.012 | - | - |
2.5276 | 1600 | 0.0099 | - | - |
2.5355 | 1605 | 0.0292 | - | - |
2.5434 | 1610 | 0.0182 | - | - |
2.5513 | 1615 | 0.0088 | - | - |
2.5592 | 1620 | 0.0206 | - | - |
2.5671 | 1625 | 0.0058 | - | - |
2.5750 | 1630 | 0.0244 | - | - |
2.5829 | 1635 | 0.0243 | - | - |
2.5908 | 1640 | 0.0311 | - | - |
2.5987 | 1645 | 0.0099 | - | - |
2.6066 | 1650 | 0.011 | - | - |
2.6145 | 1655 | 0.0076 | - | - |
2.6224 | 1660 | 0.0159 | - | - |
2.6303 | 1665 | 0.017 | - | - |
2.6382 | 1670 | 0.008 | - | - |
2.6461 | 1675 | 0.0108 | - | - |
2.6540 | 1680 | 0.0088 | - | - |
2.6619 | 1685 | 0.0094 | - | - |
2.6698 | 1690 | 0.0086 | - | - |
2.6777 | 1695 | 0.0159 | - | - |
2.6856 | 1700 | 0.013 | - | - |
2.6935 | 1705 | 0.0236 | - | - |
2.7014 | 1710 | 0.0182 | - | - |
2.7093 | 1715 | 0.0123 | - | - |
2.7172 | 1720 | 0.0157 | - | - |
2.7251 | 1725 | 0.027 | - | - |
2.7330 | 1730 | 0.0079 | - | - |
2.7409 | 1735 | 0.0146 | - | - |
2.7488 | 1740 | 0.0129 | - | - |
2.7567 | 1745 | 0.0096 | - | - |
2.7646 | 1750 | 0.0187 | - | - |
2.7725 | 1755 | 0.0099 | - | - |
2.7804 | 1760 | 0.0081 | - | - |
2.7883 | 1765 | 0.0217 | - | - |
2.7962 | 1770 | 0.0103 | - | - |
2.8041 | 1775 | 0.009 | - | - |
2.8120 | 1780 | 0.0148 | - | - |
2.8199 | 1785 | 0.0144 | - | - |
2.8278 | 1790 | 0.0167 | - | - |
2.8357 | 1795 | 0.0104 | - | - |
2.8436 | 1800 | 0.0166 | 0.0231 | 0.8522 |
2.8515 | 1805 | 0.0241 | - | - |
2.8594 | 1810 | 0.0158 | - | - |
2.8673 | 1815 | 0.0112 | - | - |
2.8752 | 1820 | 0.0195 | - | - |
2.8831 | 1825 | 0.0187 | - | - |
2.8910 | 1830 | 0.0107 | - | - |
2.8989 | 1835 | 0.0188 | - | - |
2.9068 | 1840 | 0.0173 | - | - |
2.9147 | 1845 | 0.0079 | - | - |
2.9226 | 1850 | 0.0224 | - | - |
2.9305 | 1855 | 0.0195 | - | - |
2.9384 | 1860 | 0.007 | - | - |
2.9463 | 1865 | 0.0088 | - | - |
2.9542 | 1870 | 0.0094 | - | - |
2.9621 | 1875 | 0.012 | - | - |
2.9700 | 1880 | 0.0089 | - | - |
2.9779 | 1885 | 0.0086 | - | - |
2.9858 | 1890 | 0.0084 | - | - |
2.9937 | 1895 | 0.0207 | - | - |
3.0016 | 1900 | 0.0071 | - | - |
3.0095 | 1905 | 0.0092 | - | - |
3.0174 | 1910 | 0.0054 | - | - |
3.0253 | 1915 | 0.009 | - | - |
3.0332 | 1920 | 0.0087 | - | - |
3.0411 | 1925 | 0.0074 | - | - |
3.0490 | 1930 | 0.0044 | - | - |
3.0569 | 1935 | 0.007 | - | - |
3.0648 | 1940 | 0.0136 | - | - |
3.0727 | 1945 | 0.0074 | - | - |
3.0806 | 1950 | 0.0131 | - | - |
3.0885 | 1955 | 0.0048 | - | - |
3.0964 | 1960 | 0.0149 | - | - |
3.1043 | 1965 | 0.0031 | - | - |
3.1122 | 1970 | 0.0146 | - | - |
3.1201 | 1975 | 0.0066 | - | - |
3.1280 | 1980 | 0.009 | - | - |
3.1359 | 1985 | 0.0122 | - | - |
3.1438 | 1990 | 0.0145 | - | - |
3.1517 | 1995 | 0.016 | - | - |
3.1596 | 2000 | 0.0111 | - | - |
3.1675 | 2005 | 0.0058 | - | - |
3.1754 | 2010 | 0.0081 | - | - |
3.1833 | 2015 | 0.0123 | - | - |
3.1912 | 2020 | 0.0098 | - | - |
3.1991 | 2025 | 0.0069 | - | - |
3.2070 | 2030 | 0.0111 | - | - |
3.2148 | 2035 | 0.0048 | - | - |
3.2227 | 2040 | 0.0028 | - | - |
3.2306 | 2045 | 0.0088 | - | - |
3.2385 | 2050 | 0.0092 | - | - |
3.2464 | 2055 | 0.0088 | - | - |
3.2543 | 2060 | 0.0043 | - | - |
3.2622 | 2065 | 0.0074 | - | - |
3.2701 | 2070 | 0.0043 | - | - |
3.2780 | 2075 | 0.0086 | - | - |
3.2859 | 2080 | 0.0026 | - | - |
3.2938 | 2085 | 0.012 | - | - |
3.3017 | 2090 | 0.0057 | - | - |
3.3096 | 2095 | 0.0088 | - | - |
3.3175 | 2100 | 0.0107 | 0.0217 | 0.8537 |
3.3254 | 2105 | 0.0099 | - | - |
3.3333 | 2110 | 0.0103 | - | - |
3.3412 | 2115 | 0.0079 | - | - |
3.3491 | 2120 | 0.0106 | - | - |
3.3570 | 2125 | 0.0166 | - | - |
3.3649 | 2130 | 0.0178 | - | - |
3.3728 | 2135 | 0.0106 | - | - |
3.3807 | 2140 | 0.0037 | - | - |
3.3886 | 2145 | 0.0107 | - | - |
3.3965 | 2150 | 0.0084 | - | - |
3.4044 | 2155 | 0.0085 | - | - |
3.4123 | 2160 | 0.0084 | - | - |
3.4202 | 2165 | 0.0056 | - | - |
3.4281 | 2170 | 0.005 | - | - |
3.4360 | 2175 | 0.0224 | - | - |
3.4439 | 2180 | 0.012 | - | - |
3.4518 | 2185 | 0.0094 | - | - |
3.4597 | 2190 | 0.0041 | - | - |
3.4676 | 2195 | 0.0078 | - | - |
3.4755 | 2200 | 0.0058 | - | - |
3.4834 | 2205 | 0.0061 | - | - |
3.4913 | 2210 | 0.0049 | - | - |
3.4992 | 2215 | 0.0114 | - | - |
3.5071 | 2220 | 0.0062 | - | - |
3.5150 | 2225 | 0.0064 | - | - |
3.5229 | 2230 | 0.0044 | - | - |
3.5308 | 2235 | 0.0054 | - | - |
3.5387 | 2240 | 0.0122 | - | - |
3.5466 | 2245 | 0.0082 | - | - |
3.5545 | 2250 | 0.0125 | - | - |
3.5624 | 2255 | 0.0113 | - | - |
3.5703 | 2260 | 0.01 | - | - |
3.5782 | 2265 | 0.0046 | - | - |
3.5861 | 2270 | 0.0092 | - | - |
3.5940 | 2275 | 0.0061 | - | - |
3.6019 | 2280 | 0.0104 | - | - |
3.6098 | 2285 | 0.0032 | - | - |
3.6177 | 2290 | 0.0108 | - | - |
3.6256 | 2295 | 0.0139 | - | - |
3.6335 | 2300 | 0.0129 | - | - |
3.6414 | 2305 | 0.0068 | - | - |
3.6493 | 2310 | 0.0096 | - | - |
3.6572 | 2315 | 0.0117 | - | - |
3.6651 | 2320 | 0.019 | - | - |
3.6730 | 2325 | 0.0084 | - | - |
3.6809 | 2330 | 0.0145 | - | - |
3.6888 | 2335 | 0.0056 | - | - |
3.6967 | 2340 | 0.0043 | - | - |
3.7046 | 2345 | 0.0087 | - | - |
3.7125 | 2350 | 0.0141 | - | - |
3.7204 | 2355 | 0.0073 | - | - |
3.7283 | 2360 | 0.0056 | - | - |
3.7362 | 2365 | 0.0139 | - | - |
3.7441 | 2370 | 0.0058 | - | - |
3.7520 | 2375 | 0.0161 | - | - |
3.7599 | 2380 | 0.0053 | - | - |
3.7678 | 2385 | 0.0034 | - | - |
3.7757 | 2390 | 0.0137 | - | - |
3.7836 | 2395 | 0.0115 | - | - |
3.7915 | 2400 | 0.0153 | 0.0217 | 0.8547 |
3.7994 | 2405 | 0.0121 | - | - |
3.8073 | 2410 | 0.0129 | - | - |
3.8152 | 2415 | 0.0149 | - | - |
3.8231 | 2420 | 0.0069 | - | - |
3.8310 | 2425 | 0.0077 | - | - |
3.8389 | 2430 | 0.0232 | - | - |
3.8468 | 2435 | 0.008 | - | - |
3.8547 | 2440 | 0.0042 | - | - |
3.8626 | 2445 | 0.0033 | - | - |
3.8705 | 2450 | 0.0057 | - | - |
3.8784 | 2455 | 0.0048 | - | - |
3.8863 | 2460 | 0.0144 | - | - |
3.8942 | 2465 | 0.0105 | - | - |
3.9021 | 2470 | 0.0119 | - | - |
3.9100 | 2475 | 0.0071 | - | - |
3.9179 | 2480 | 0.0075 | - | - |
3.9258 | 2485 | 0.0084 | - | - |
3.9336 | 2490 | 0.0076 | - | - |
3.9415 | 2495 | 0.0071 | - | - |
3.9494 | 2500 | 0.006 | - | - |
3.9573 | 2505 | 0.0048 | - | - |
3.9652 | 2510 | 0.0035 | - | - |
3.9731 | 2515 | 0.0067 | - | - |
3.9810 | 2520 | 0.0106 | - | - |
3.9889 | 2525 | 0.0076 | - | - |
3.9968 | 2530 | 0.0063 | - | - |
4.0047 | 2535 | 0.0103 | - | - |
4.0126 | 2540 | 0.0139 | - | - |
4.0205 | 2545 | 0.0035 | - | - |
4.0284 | 2550 | 0.0061 | - | - |
4.0363 | 2555 | 0.0122 | - | - |
4.0442 | 2560 | 0.0032 | - | - |
4.0521 | 2565 | 0.0048 | - | - |
4.0600 | 2570 | 0.0049 | - | - |
4.0679 | 2575 | 0.0041 | - | - |
4.0758 | 2580 | 0.0051 | - | - |
4.0837 | 2585 | 0.0058 | - | - |
4.0916 | 2590 | 0.0042 | - | - |
4.0995 | 2595 | 0.0094 | - | - |
4.1074 | 2600 | 0.0019 | - | - |
4.1153 | 2605 | 0.0072 | - | - |
4.1232 | 2610 | 0.0026 | - | - |
4.1311 | 2615 | 0.0085 | - | - |
4.1390 | 2620 | 0.0069 | - | - |
4.1469 | 2625 | 0.0026 | - | - |
4.1548 | 2630 | 0.0045 | - | - |
4.1627 | 2635 | 0.0059 | - | - |
4.1706 | 2640 | 0.0065 | - | - |
4.1785 | 2645 | 0.007 | - | - |
4.1864 | 2650 | 0.004 | - | - |
4.1943 | 2655 | 0.0021 | - | - |
4.2022 | 2660 | 0.0034 | - | - |
4.2101 | 2665 | 0.0092 | - | - |
4.2180 | 2670 | 0.0047 | - | - |
4.2259 | 2675 | 0.0076 | - | - |
4.2338 | 2680 | 0.0027 | - | - |
4.2417 | 2685 | 0.0096 | - | - |
4.2496 | 2690 | 0.0035 | - | - |
4.2575 | 2695 | 0.0104 | - | - |
4.2654 | 2700 | 0.0019 | 0.0216 | 0.8539 |
4.2733 | 2705 | 0.0073 | - | - |
4.2812 | 2710 | 0.0115 | - | - |
4.2891 | 2715 | 0.0053 | - | - |
4.2970 | 2720 | 0.0047 | - | - |
4.3049 | 2725 | 0.004 | - | - |
4.3128 | 2730 | 0.006 | - | - |
4.3207 | 2735 | 0.0024 | - | - |
4.3286 | 2740 | 0.0034 | - | - |
4.3365 | 2745 | 0.0066 | - | - |
4.3444 | 2750 | 0.0019 | - | - |
4.3523 | 2755 | 0.0085 | - | - |
4.3602 | 2760 | 0.0057 | - | - |
4.3681 | 2765 | 0.0031 | - | - |
4.3760 | 2770 | 0.0173 | - | - |
4.3839 | 2775 | 0.0037 | - | - |
4.3918 | 2780 | 0.0056 | - | - |
4.3997 | 2785 | 0.0111 | - | - |
4.4076 | 2790 | 0.0063 | - | - |
4.4155 | 2795 | 0.0072 | - | - |
4.4234 | 2800 | 0.0125 | - | - |
4.4313 | 2805 | 0.0045 | - | - |
4.4392 | 2810 | 0.0022 | - | - |
4.4471 | 2815 | 0.0037 | - | - |
4.4550 | 2820 | 0.0044 | - | - |
4.4629 | 2825 | 0.0058 | - | - |
4.4708 | 2830 | 0.0061 | - | - |
4.4787 | 2835 | 0.0101 | - | - |
4.4866 | 2840 | 0.0021 | - | - |
4.4945 | 2845 | 0.0122 | - | - |
4.5024 | 2850 | 0.0089 | - | - |
4.5103 | 2855 | 0.0035 | - | - |
4.5182 | 2860 | 0.0027 | - | - |
4.5261 | 2865 | 0.0036 | - | - |
4.5340 | 2870 | 0.0035 | - | - |
4.5419 | 2875 | 0.004 | - | - |
4.5498 | 2880 | 0.0082 | - | - |
4.5577 | 2885 | 0.0038 | - | - |
4.5656 | 2890 | 0.0022 | - | - |
4.5735 | 2895 | 0.0023 | - | - |
4.5814 | 2900 | 0.0068 | - | - |
4.5893 | 2905 | 0.0035 | - | - |
4.5972 | 2910 | 0.0025 | - | - |
4.6051 | 2915 | 0.0024 | - | - |
4.6130 | 2920 | 0.0124 | - | - |
4.6209 | 2925 | 0.0048 | - | - |
4.6288 | 2930 | 0.005 | - | - |
4.6367 | 2935 | 0.0052 | - | - |
4.6445 | 2940 | 0.0038 | - | - |
4.6524 | 2945 | 0.0067 | - | - |
4.6603 | 2950 | 0.0031 | - | - |
4.6682 | 2955 | 0.0082 | - | - |
4.6761 | 2960 | 0.0039 | - | - |
4.6840 | 2965 | 0.0031 | - | - |
4.6919 | 2970 | 0.0067 | - | - |
4.6998 | 2975 | 0.0086 | - | - |
4.7077 | 2980 | 0.0041 | - | - |
4.7156 | 2985 | 0.0018 | - | - |
4.7235 | 2990 | 0.0145 | - | - |
4.7314 | 2995 | 0.0095 | - | - |
4.7393 | 3000 | 0.0041 | 0.0215 | 0.8542 |
4.7472 | 3005 | 0.015 | - | - |
4.7551 | 3010 | 0.0084 | - | - |
4.7630 | 3015 | 0.0148 | - | - |
4.7709 | 3020 | 0.0023 | - | - |
4.7788 | 3025 | 0.0117 | - | - |
4.7867 | 3030 | 0.0081 | - | - |
4.7946 | 3035 | 0.0074 | - | - |
4.8025 | 3040 | 0.0033 | - | - |
4.8104 | 3045 | 0.0071 | - | - |
4.8183 | 3050 | 0.0068 | - | - |
4.8262 | 3055 | 0.006 | - | - |
4.8341 | 3060 | 0.0084 | - | - |
4.8420 | 3065 | 0.0061 | - | - |
4.8499 | 3070 | 0.0028 | - | - |
4.8578 | 3075 | 0.0118 | - | - |
4.8657 | 3080 | 0.0071 | - | - |
4.8736 | 3085 | 0.0082 | - | - |
4.8815 | 3090 | 0.0044 | - | - |
4.8894 | 3095 | 0.0125 | - | - |
4.8973 | 3100 | 0.003 | - | - |
4.9052 | 3105 | 0.0052 | - | - |
4.9131 | 3110 | 0.0082 | - | - |
4.9210 | 3115 | 0.0019 | - | - |
4.9289 | 3120 | 0.0044 | - | - |
4.9368 | 3125 | 0.011 | - | - |
4.9447 | 3130 | 0.0073 | - | - |
4.9526 | 3135 | 0.0033 | - | - |
4.9605 | 3140 | 0.0091 | - | - |
4.9684 | 3145 | 0.0065 | - | - |
4.9763 | 3150 | 0.0202 | - | - |
4.9842 | 3155 | 0.0094 | - | - |
4.9921 | 3160 | 0.0025 | - | - |
5.0 | 3165 | 0.0073 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 2.14.4
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 32
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for SenhorDasMoscas/acho-ptbr-e5-lr3e-05-09-01-2025
Base model
neuralmind/bert-large-portuguese-casedEvaluation results
- Pearson Cosine on eval similarityself-reported0.947
- Spearman Cosine on eval similarityself-reported0.854