SentenceTransformer based on neuralmind/bert-large-portuguese-cased

This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: neuralmind/bert-large-portuguese-cased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e5-lr3e-05-09-01-2025")
# Run inference
sentences = [
    'varal chao retratilr',
    'suplemento',
    'servico reparo eletronico',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.947
spearman_cosine 0.8542

Training Details

Training Dataset

Unnamed Dataset

  • Size: 20,237 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.71 tokens
    • max: 18 tokens
    • min: 3 tokens
    • mean: 6.1 tokens
    • max: 11 tokens
    • min: 0.1
    • mean: 0.56
    • max: 1.0
  • Samples:
    text1 text2 label
    poltrona reclinavel confortavel livro material literario 0.1
    contratar servico paisagismo servico area educacao 0.1
    aula canto coral servico area educacao 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 2,249 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.76 tokens
    • max: 17 tokens
    • min: 3 tokens
    • mean: 6.11 tokens
    • max: 11 tokens
    • min: 0.1
    • mean: 0.55
    • max: 1.0
  • Samples:
    text1 text2 label
    brinquedo pet produto pet animal domestico 1.0
    tapete sala produto pet animal domestico 0.1
    livro aventura instrumento musical 0.1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 3e-05
  • weight_decay: 0.1
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • warmup_steps: 252
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.1
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 252
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss eval-similarity_spearman_cosine
0.0079 5 0.2353 - -
0.0158 10 0.2114 - -
0.0237 15 0.2089 - -
0.0316 20 0.1935 - -
0.0395 25 0.1799 - -
0.0474 30 0.178 - -
0.0553 35 0.1686 - -
0.0632 40 0.1602 - -
0.0711 45 0.1502 - -
0.0790 50 0.1446 - -
0.0869 55 0.1399 - -
0.0948 60 0.1318 - -
0.1027 65 0.1251 - -
0.1106 70 0.1035 - -
0.1185 75 0.1064 - -
0.1264 80 0.0886 - -
0.1343 85 0.108 - -
0.1422 90 0.0877 - -
0.1501 95 0.1023 - -
0.1580 100 0.0868 - -
0.1659 105 0.0932 - -
0.1738 110 0.0678 - -
0.1817 115 0.0748 - -
0.1896 120 0.0774 - -
0.1975 125 0.0758 - -
0.2054 130 0.0576 - -
0.2133 135 0.0604 - -
0.2212 140 0.0569 - -
0.2291 145 0.0647 - -
0.2370 150 0.0632 - -
0.2449 155 0.0619 - -
0.2528 160 0.0543 - -
0.2607 165 0.0536 - -
0.2686 170 0.0707 - -
0.2765 175 0.0528 - -
0.2844 180 0.0613 - -
0.2923 185 0.0536 - -
0.3002 190 0.0573 - -
0.3081 195 0.0483 - -
0.3160 200 0.0553 - -
0.3239 205 0.0547 - -
0.3318 210 0.0632 - -
0.3397 215 0.0445 - -
0.3476 220 0.0763 - -
0.3555 225 0.0566 - -
0.3633 230 0.0527 - -
0.3712 235 0.0554 - -
0.3791 240 0.0445 - -
0.3870 245 0.0456 - -
0.3949 250 0.0504 - -
0.4028 255 0.063 - -
0.4107 260 0.0441 - -
0.4186 265 0.053 - -
0.4265 270 0.0494 - -
0.4344 275 0.0394 - -
0.4423 280 0.0565 - -
0.4502 285 0.0431 - -
0.4581 290 0.0368 - -
0.4660 295 0.0392 - -
0.4739 300 0.0496 0.0412 0.8389
0.4818 305 0.0482 - -
0.4897 310 0.048 - -
0.4976 315 0.0373 - -
0.5055 320 0.0279 - -
0.5134 325 0.0447 - -
0.5213 330 0.0412 - -
0.5292 335 0.0338 - -
0.5371 340 0.0468 - -
0.5450 345 0.0508 - -
0.5529 350 0.0447 - -
0.5608 355 0.0407 - -
0.5687 360 0.042 - -
0.5766 365 0.0452 - -
0.5845 370 0.0346 - -
0.5924 375 0.0506 - -
0.6003 380 0.0367 - -
0.6082 385 0.0413 - -
0.6161 390 0.0523 - -
0.6240 395 0.037 - -
0.6319 400 0.0497 - -
0.6398 405 0.0375 - -
0.6477 410 0.045 - -
0.6556 415 0.0346 - -
0.6635 420 0.0428 - -
0.6714 425 0.022 - -
0.6793 430 0.0422 - -
0.6872 435 0.0514 - -
0.6951 440 0.0454 - -
0.7030 445 0.0418 - -
0.7109 450 0.0587 - -
0.7188 455 0.0477 - -
0.7267 460 0.0515 - -
0.7346 465 0.0466 - -
0.7425 470 0.0331 - -
0.7504 475 0.0339 - -
0.7583 480 0.0367 - -
0.7662 485 0.0342 - -
0.7741 490 0.0343 - -
0.7820 495 0.0423 - -
0.7899 500 0.0548 - -
0.7978 505 0.0393 - -
0.8057 510 0.0371 - -
0.8136 515 0.0222 - -
0.8215 520 0.0411 - -
0.8294 525 0.0321 - -
0.8373 530 0.0408 - -
0.8452 535 0.0296 - -
0.8531 540 0.0306 - -
0.8610 545 0.0329 - -
0.8689 550 0.034 - -
0.8768 555 0.0482 - -
0.8847 560 0.0376 - -
0.8926 565 0.054 - -
0.9005 570 0.0345 - -
0.9084 575 0.0335 - -
0.9163 580 0.0506 - -
0.9242 585 0.0444 - -
0.9321 590 0.0276 - -
0.9400 595 0.0343 - -
0.9479 600 0.0393 0.0313 0.8469
0.9558 605 0.0288 - -
0.9637 610 0.0328 - -
0.9716 615 0.0256 - -
0.9795 620 0.0273 - -
0.9874 625 0.0361 - -
0.9953 630 0.0298 - -
1.0032 635 0.0213 - -
1.0111 640 0.0319 - -
1.0190 645 0.0185 - -
1.0269 650 0.0296 - -
1.0348 655 0.0186 - -
1.0427 660 0.0246 - -
1.0506 665 0.0286 - -
1.0585 670 0.0252 - -
1.0664 675 0.0257 - -
1.0742 680 0.0334 - -
1.0821 685 0.0172 - -
1.0900 690 0.0225 - -
1.0979 695 0.0206 - -
1.1058 700 0.0271 - -
1.1137 705 0.0224 - -
1.1216 710 0.0148 - -
1.1295 715 0.0215 - -
1.1374 720 0.0373 - -
1.1453 725 0.0204 - -
1.1532 730 0.0191 - -
1.1611 735 0.0224 - -
1.1690 740 0.0243 - -
1.1769 745 0.0401 - -
1.1848 750 0.0196 - -
1.1927 755 0.0358 - -
1.2006 760 0.0399 - -
1.2085 765 0.0169 - -
1.2164 770 0.0173 - -
1.2243 775 0.0252 - -
1.2322 780 0.0342 - -
1.2401 785 0.0287 - -
1.2480 790 0.0227 - -
1.2559 795 0.012 - -
1.2638 800 0.0259 - -
1.2717 805 0.0254 - -
1.2796 810 0.0363 - -
1.2875 815 0.0256 - -
1.2954 820 0.0264 - -
1.3033 825 0.0209 - -
1.3112 830 0.0326 - -
1.3191 835 0.0193 - -
1.3270 840 0.0234 - -
1.3349 845 0.0551 - -
1.3428 850 0.0283 - -
1.3507 855 0.0188 - -
1.3586 860 0.0224 - -
1.3665 865 0.0249 - -
1.3744 870 0.0239 - -
1.3823 875 0.0276 - -
1.3902 880 0.0222 - -
1.3981 885 0.0246 - -
1.4060 890 0.0269 - -
1.4139 895 0.0194 - -
1.4218 900 0.0241 0.0272 0.8494
1.4297 905 0.0204 - -
1.4376 910 0.019 - -
1.4455 915 0.0362 - -
1.4534 920 0.015 - -
1.4613 925 0.0211 - -
1.4692 930 0.0257 - -
1.4771 935 0.019 - -
1.4850 940 0.029 - -
1.4929 945 0.0213 - -
1.5008 950 0.0174 - -
1.5087 955 0.0141 - -
1.5166 960 0.0114 - -
1.5245 965 0.0325 - -
1.5324 970 0.018 - -
1.5403 975 0.0167 - -
1.5482 980 0.0156 - -
1.5561 985 0.023 - -
1.5640 990 0.0208 - -
1.5719 995 0.0187 - -
1.5798 1000 0.0202 - -
1.5877 1005 0.0148 - -
1.5956 1010 0.0248 - -
1.6035 1015 0.015 - -
1.6114 1020 0.0265 - -
1.6193 1025 0.0415 - -
1.6272 1030 0.0233 - -
1.6351 1035 0.0212 - -
1.6430 1040 0.0248 - -
1.6509 1045 0.0236 - -
1.6588 1050 0.0147 - -
1.6667 1055 0.0242 - -
1.6746 1060 0.0415 - -
1.6825 1065 0.0249 - -
1.6904 1070 0.0239 - -
1.6983 1075 0.0182 - -
1.7062 1080 0.0155 - -
1.7141 1085 0.0352 - -
1.7220 1090 0.0269 - -
1.7299 1095 0.0182 - -
1.7378 1100 0.0271 - -
1.7457 1105 0.0168 - -
1.7536 1110 0.0222 - -
1.7615 1115 0.0253 - -
1.7694 1120 0.0249 - -
1.7773 1125 0.025 - -
1.7852 1130 0.0253 - -
1.7930 1135 0.0197 - -
1.8009 1140 0.0205 - -
1.8088 1145 0.0289 - -
1.8167 1150 0.0218 - -
1.8246 1155 0.0241 - -
1.8325 1160 0.0191 - -
1.8404 1165 0.0199 - -
1.8483 1170 0.028 - -
1.8562 1175 0.0135 - -
1.8641 1180 0.0218 - -
1.8720 1185 0.0226 - -
1.8799 1190 0.0227 - -
1.8878 1195 0.0148 - -
1.8957 1200 0.0327 0.0255 0.8500
1.9036 1205 0.025 - -
1.9115 1210 0.0174 - -
1.9194 1215 0.0155 - -
1.9273 1220 0.0169 - -
1.9352 1225 0.0163 - -
1.9431 1230 0.0142 - -
1.9510 1235 0.012 - -
1.9589 1240 0.015 - -
1.9668 1245 0.0356 - -
1.9747 1250 0.0238 - -
1.9826 1255 0.0199 - -
1.9905 1260 0.0167 - -
1.9984 1265 0.0339 - -
2.0063 1270 0.0107 - -
2.0142 1275 0.0121 - -
2.0221 1280 0.0171 - -
2.0300 1285 0.0128 - -
2.0379 1290 0.0123 - -
2.0458 1295 0.0156 - -
2.0537 1300 0.0186 - -
2.0616 1305 0.0142 - -
2.0695 1310 0.0086 - -
2.0774 1315 0.0074 - -
2.0853 1320 0.0098 - -
2.0932 1325 0.0213 - -
2.1011 1330 0.0117 - -
2.1090 1335 0.0123 - -
2.1169 1340 0.0092 - -
2.1248 1345 0.011 - -
2.1327 1350 0.0127 - -
2.1406 1355 0.0133 - -
2.1485 1360 0.0127 - -
2.1564 1365 0.0133 - -
2.1643 1370 0.0144 - -
2.1722 1375 0.0165 - -
2.1801 1380 0.0106 - -
2.1880 1385 0.0167 - -
2.1959 1390 0.0124 - -
2.2038 1395 0.0107 - -
2.2117 1400 0.0173 - -
2.2196 1405 0.0165 - -
2.2275 1410 0.0179 - -
2.2354 1415 0.0131 - -
2.2433 1420 0.0118 - -
2.2512 1425 0.0094 - -
2.2591 1430 0.0114 - -
2.2670 1435 0.0251 - -
2.2749 1440 0.0293 - -
2.2828 1445 0.0108 - -
2.2907 1450 0.0099 - -
2.2986 1455 0.0178 - -
2.3065 1460 0.0264 - -
2.3144 1465 0.0091 - -
2.3223 1470 0.0118 - -
2.3302 1475 0.014 - -
2.3381 1480 0.0209 - -
2.3460 1485 0.0068 - -
2.3539 1490 0.012 - -
2.3618 1495 0.0105 - -
2.3697 1500 0.0149 0.0250 0.8494
2.3776 1505 0.0114 - -
2.3855 1510 0.0179 - -
2.3934 1515 0.0136 - -
2.4013 1520 0.0096 - -
2.4092 1525 0.0131 - -
2.4171 1530 0.0137 - -
2.4250 1535 0.0194 - -
2.4329 1540 0.013 - -
2.4408 1545 0.0289 - -
2.4487 1550 0.0074 - -
2.4566 1555 0.0142 - -
2.4645 1560 0.0041 - -
2.4724 1565 0.0138 - -
2.4803 1570 0.0163 - -
2.4882 1575 0.0259 - -
2.4961 1580 0.0127 - -
2.5039 1585 0.0056 - -
2.5118 1590 0.0101 - -
2.5197 1595 0.012 - -
2.5276 1600 0.0099 - -
2.5355 1605 0.0292 - -
2.5434 1610 0.0182 - -
2.5513 1615 0.0088 - -
2.5592 1620 0.0206 - -
2.5671 1625 0.0058 - -
2.5750 1630 0.0244 - -
2.5829 1635 0.0243 - -
2.5908 1640 0.0311 - -
2.5987 1645 0.0099 - -
2.6066 1650 0.011 - -
2.6145 1655 0.0076 - -
2.6224 1660 0.0159 - -
2.6303 1665 0.017 - -
2.6382 1670 0.008 - -
2.6461 1675 0.0108 - -
2.6540 1680 0.0088 - -
2.6619 1685 0.0094 - -
2.6698 1690 0.0086 - -
2.6777 1695 0.0159 - -
2.6856 1700 0.013 - -
2.6935 1705 0.0236 - -
2.7014 1710 0.0182 - -
2.7093 1715 0.0123 - -
2.7172 1720 0.0157 - -
2.7251 1725 0.027 - -
2.7330 1730 0.0079 - -
2.7409 1735 0.0146 - -
2.7488 1740 0.0129 - -
2.7567 1745 0.0096 - -
2.7646 1750 0.0187 - -
2.7725 1755 0.0099 - -
2.7804 1760 0.0081 - -
2.7883 1765 0.0217 - -
2.7962 1770 0.0103 - -
2.8041 1775 0.009 - -
2.8120 1780 0.0148 - -
2.8199 1785 0.0144 - -
2.8278 1790 0.0167 - -
2.8357 1795 0.0104 - -
2.8436 1800 0.0166 0.0231 0.8522
2.8515 1805 0.0241 - -
2.8594 1810 0.0158 - -
2.8673 1815 0.0112 - -
2.8752 1820 0.0195 - -
2.8831 1825 0.0187 - -
2.8910 1830 0.0107 - -
2.8989 1835 0.0188 - -
2.9068 1840 0.0173 - -
2.9147 1845 0.0079 - -
2.9226 1850 0.0224 - -
2.9305 1855 0.0195 - -
2.9384 1860 0.007 - -
2.9463 1865 0.0088 - -
2.9542 1870 0.0094 - -
2.9621 1875 0.012 - -
2.9700 1880 0.0089 - -
2.9779 1885 0.0086 - -
2.9858 1890 0.0084 - -
2.9937 1895 0.0207 - -
3.0016 1900 0.0071 - -
3.0095 1905 0.0092 - -
3.0174 1910 0.0054 - -
3.0253 1915 0.009 - -
3.0332 1920 0.0087 - -
3.0411 1925 0.0074 - -
3.0490 1930 0.0044 - -
3.0569 1935 0.007 - -
3.0648 1940 0.0136 - -
3.0727 1945 0.0074 - -
3.0806 1950 0.0131 - -
3.0885 1955 0.0048 - -
3.0964 1960 0.0149 - -
3.1043 1965 0.0031 - -
3.1122 1970 0.0146 - -
3.1201 1975 0.0066 - -
3.1280 1980 0.009 - -
3.1359 1985 0.0122 - -
3.1438 1990 0.0145 - -
3.1517 1995 0.016 - -
3.1596 2000 0.0111 - -
3.1675 2005 0.0058 - -
3.1754 2010 0.0081 - -
3.1833 2015 0.0123 - -
3.1912 2020 0.0098 - -
3.1991 2025 0.0069 - -
3.2070 2030 0.0111 - -
3.2148 2035 0.0048 - -
3.2227 2040 0.0028 - -
3.2306 2045 0.0088 - -
3.2385 2050 0.0092 - -
3.2464 2055 0.0088 - -
3.2543 2060 0.0043 - -
3.2622 2065 0.0074 - -
3.2701 2070 0.0043 - -
3.2780 2075 0.0086 - -
3.2859 2080 0.0026 - -
3.2938 2085 0.012 - -
3.3017 2090 0.0057 - -
3.3096 2095 0.0088 - -
3.3175 2100 0.0107 0.0217 0.8537
3.3254 2105 0.0099 - -
3.3333 2110 0.0103 - -
3.3412 2115 0.0079 - -
3.3491 2120 0.0106 - -
3.3570 2125 0.0166 - -
3.3649 2130 0.0178 - -
3.3728 2135 0.0106 - -
3.3807 2140 0.0037 - -
3.3886 2145 0.0107 - -
3.3965 2150 0.0084 - -
3.4044 2155 0.0085 - -
3.4123 2160 0.0084 - -
3.4202 2165 0.0056 - -
3.4281 2170 0.005 - -
3.4360 2175 0.0224 - -
3.4439 2180 0.012 - -
3.4518 2185 0.0094 - -
3.4597 2190 0.0041 - -
3.4676 2195 0.0078 - -
3.4755 2200 0.0058 - -
3.4834 2205 0.0061 - -
3.4913 2210 0.0049 - -
3.4992 2215 0.0114 - -
3.5071 2220 0.0062 - -
3.5150 2225 0.0064 - -
3.5229 2230 0.0044 - -
3.5308 2235 0.0054 - -
3.5387 2240 0.0122 - -
3.5466 2245 0.0082 - -
3.5545 2250 0.0125 - -
3.5624 2255 0.0113 - -
3.5703 2260 0.01 - -
3.5782 2265 0.0046 - -
3.5861 2270 0.0092 - -
3.5940 2275 0.0061 - -
3.6019 2280 0.0104 - -
3.6098 2285 0.0032 - -
3.6177 2290 0.0108 - -
3.6256 2295 0.0139 - -
3.6335 2300 0.0129 - -
3.6414 2305 0.0068 - -
3.6493 2310 0.0096 - -
3.6572 2315 0.0117 - -
3.6651 2320 0.019 - -
3.6730 2325 0.0084 - -
3.6809 2330 0.0145 - -
3.6888 2335 0.0056 - -
3.6967 2340 0.0043 - -
3.7046 2345 0.0087 - -
3.7125 2350 0.0141 - -
3.7204 2355 0.0073 - -
3.7283 2360 0.0056 - -
3.7362 2365 0.0139 - -
3.7441 2370 0.0058 - -
3.7520 2375 0.0161 - -
3.7599 2380 0.0053 - -
3.7678 2385 0.0034 - -
3.7757 2390 0.0137 - -
3.7836 2395 0.0115 - -
3.7915 2400 0.0153 0.0217 0.8547
3.7994 2405 0.0121 - -
3.8073 2410 0.0129 - -
3.8152 2415 0.0149 - -
3.8231 2420 0.0069 - -
3.8310 2425 0.0077 - -
3.8389 2430 0.0232 - -
3.8468 2435 0.008 - -
3.8547 2440 0.0042 - -
3.8626 2445 0.0033 - -
3.8705 2450 0.0057 - -
3.8784 2455 0.0048 - -
3.8863 2460 0.0144 - -
3.8942 2465 0.0105 - -
3.9021 2470 0.0119 - -
3.9100 2475 0.0071 - -
3.9179 2480 0.0075 - -
3.9258 2485 0.0084 - -
3.9336 2490 0.0076 - -
3.9415 2495 0.0071 - -
3.9494 2500 0.006 - -
3.9573 2505 0.0048 - -
3.9652 2510 0.0035 - -
3.9731 2515 0.0067 - -
3.9810 2520 0.0106 - -
3.9889 2525 0.0076 - -
3.9968 2530 0.0063 - -
4.0047 2535 0.0103 - -
4.0126 2540 0.0139 - -
4.0205 2545 0.0035 - -
4.0284 2550 0.0061 - -
4.0363 2555 0.0122 - -
4.0442 2560 0.0032 - -
4.0521 2565 0.0048 - -
4.0600 2570 0.0049 - -
4.0679 2575 0.0041 - -
4.0758 2580 0.0051 - -
4.0837 2585 0.0058 - -
4.0916 2590 0.0042 - -
4.0995 2595 0.0094 - -
4.1074 2600 0.0019 - -
4.1153 2605 0.0072 - -
4.1232 2610 0.0026 - -
4.1311 2615 0.0085 - -
4.1390 2620 0.0069 - -
4.1469 2625 0.0026 - -
4.1548 2630 0.0045 - -
4.1627 2635 0.0059 - -
4.1706 2640 0.0065 - -
4.1785 2645 0.007 - -
4.1864 2650 0.004 - -
4.1943 2655 0.0021 - -
4.2022 2660 0.0034 - -
4.2101 2665 0.0092 - -
4.2180 2670 0.0047 - -
4.2259 2675 0.0076 - -
4.2338 2680 0.0027 - -
4.2417 2685 0.0096 - -
4.2496 2690 0.0035 - -
4.2575 2695 0.0104 - -
4.2654 2700 0.0019 0.0216 0.8539
4.2733 2705 0.0073 - -
4.2812 2710 0.0115 - -
4.2891 2715 0.0053 - -
4.2970 2720 0.0047 - -
4.3049 2725 0.004 - -
4.3128 2730 0.006 - -
4.3207 2735 0.0024 - -
4.3286 2740 0.0034 - -
4.3365 2745 0.0066 - -
4.3444 2750 0.0019 - -
4.3523 2755 0.0085 - -
4.3602 2760 0.0057 - -
4.3681 2765 0.0031 - -
4.3760 2770 0.0173 - -
4.3839 2775 0.0037 - -
4.3918 2780 0.0056 - -
4.3997 2785 0.0111 - -
4.4076 2790 0.0063 - -
4.4155 2795 0.0072 - -
4.4234 2800 0.0125 - -
4.4313 2805 0.0045 - -
4.4392 2810 0.0022 - -
4.4471 2815 0.0037 - -
4.4550 2820 0.0044 - -
4.4629 2825 0.0058 - -
4.4708 2830 0.0061 - -
4.4787 2835 0.0101 - -
4.4866 2840 0.0021 - -
4.4945 2845 0.0122 - -
4.5024 2850 0.0089 - -
4.5103 2855 0.0035 - -
4.5182 2860 0.0027 - -
4.5261 2865 0.0036 - -
4.5340 2870 0.0035 - -
4.5419 2875 0.004 - -
4.5498 2880 0.0082 - -
4.5577 2885 0.0038 - -
4.5656 2890 0.0022 - -
4.5735 2895 0.0023 - -
4.5814 2900 0.0068 - -
4.5893 2905 0.0035 - -
4.5972 2910 0.0025 - -
4.6051 2915 0.0024 - -
4.6130 2920 0.0124 - -
4.6209 2925 0.0048 - -
4.6288 2930 0.005 - -
4.6367 2935 0.0052 - -
4.6445 2940 0.0038 - -
4.6524 2945 0.0067 - -
4.6603 2950 0.0031 - -
4.6682 2955 0.0082 - -
4.6761 2960 0.0039 - -
4.6840 2965 0.0031 - -
4.6919 2970 0.0067 - -
4.6998 2975 0.0086 - -
4.7077 2980 0.0041 - -
4.7156 2985 0.0018 - -
4.7235 2990 0.0145 - -
4.7314 2995 0.0095 - -
4.7393 3000 0.0041 0.0215 0.8542
4.7472 3005 0.015 - -
4.7551 3010 0.0084 - -
4.7630 3015 0.0148 - -
4.7709 3020 0.0023 - -
4.7788 3025 0.0117 - -
4.7867 3030 0.0081 - -
4.7946 3035 0.0074 - -
4.8025 3040 0.0033 - -
4.8104 3045 0.0071 - -
4.8183 3050 0.0068 - -
4.8262 3055 0.006 - -
4.8341 3060 0.0084 - -
4.8420 3065 0.0061 - -
4.8499 3070 0.0028 - -
4.8578 3075 0.0118 - -
4.8657 3080 0.0071 - -
4.8736 3085 0.0082 - -
4.8815 3090 0.0044 - -
4.8894 3095 0.0125 - -
4.8973 3100 0.003 - -
4.9052 3105 0.0052 - -
4.9131 3110 0.0082 - -
4.9210 3115 0.0019 - -
4.9289 3120 0.0044 - -
4.9368 3125 0.011 - -
4.9447 3130 0.0073 - -
4.9526 3135 0.0033 - -
4.9605 3140 0.0091 - -
4.9684 3145 0.0065 - -
4.9763 3150 0.0202 - -
4.9842 3155 0.0094 - -
4.9921 3160 0.0025 - -
5.0 3165 0.0073 - -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 2.14.4
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
32
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SenhorDasMoscas/acho-ptbr-e5-lr3e-05-09-01-2025

Finetuned
(43)
this model

Evaluation results