SentenceTransformer based on neuralmind/bert-large-portuguese-cased

This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: neuralmind/bert-large-portuguese-cased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e4-lr3e-05-29-12-2024")
# Run inference
sentences = [
    'circulo mdf decorar',
    'decoracao festa',
    'moda acessorio',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9114
spearman_cosine 0.8357

Training Details

Training Dataset

Unnamed Dataset

  • Size: 17,147 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.53 tokens
    • max: 18 tokens
    • min: 3 tokens
    • mean: 6.34 tokens
    • max: 11 tokens
    • min: 0.1
    • mean: 0.56
    • max: 1.0
  • Samples:
    text1 text2 label
    batedor manual massa livro material literario 0.1
    procuro cerveja Chimay bebida alcoolico 1.0
    livro ficcao cientifico item colecao 0.1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,906 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.58 tokens
    • max: 16 tokens
    • min: 3 tokens
    • mean: 6.35 tokens
    • max: 11 tokens
    • min: 0.1
    • mean: 0.55
    • max: 1.0
  • Samples:
    text1 text2 label
    alugar barco passeio servico area educacao 0.1
    pneu Michelin Primacy 4 195/55r15 peca acessorio automotivo 1.0
    querer heineken bem gelado bebida alcoolico 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 3e-05
  • weight_decay: 0.1
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • warmup_steps: 214
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.1
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 214
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss eval-similarity_spearman_cosine
0.0093 5 0.2225 - -
0.0187 10 0.2123 - -
0.0280 15 0.2135 - -
0.0373 20 0.2118 - -
0.0466 25 0.1799 - -
0.0560 30 0.1873 - -
0.0653 35 0.1685 - -
0.0746 40 0.1646 - -
0.0840 45 0.1619 - -
0.0933 50 0.1451 - -
0.1026 55 0.1444 - -
0.1119 60 0.1492 - -
0.1213 65 0.1262 - -
0.1306 70 0.1213 - -
0.1399 75 0.112 - -
0.1493 80 0.1119 - -
0.1586 85 0.0931 - -
0.1679 90 0.0962 - -
0.1772 95 0.1061 - -
0.1866 100 0.0912 - -
0.1959 105 0.0738 - -
0.2052 110 0.0899 - -
0.2146 115 0.075 - -
0.2239 120 0.0757 - -
0.2332 125 0.0734 - -
0.2425 130 0.0652 - -
0.2519 135 0.0676 - -
0.2612 140 0.071 - -
0.2705 145 0.0685 - -
0.2799 150 0.0813 - -
0.2892 155 0.0764 - -
0.2985 160 0.085 - -
0.3078 165 0.0701 - -
0.3172 170 0.0509 - -
0.3265 175 0.0719 - -
0.3358 180 0.0671 - -
0.3451 185 0.0599 - -
0.3545 190 0.0691 - -
0.3638 195 0.0839 - -
0.3731 200 0.0713 - -
0.3825 205 0.0681 - -
0.3918 210 0.0487 - -
0.4011 215 0.0596 - -
0.4104 220 0.0554 - -
0.4198 225 0.07 - -
0.4291 230 0.0648 - -
0.4384 235 0.0637 - -
0.4478 240 0.0412 - -
0.4571 245 0.0705 - -
0.4664 250 0.0642 - -
0.4757 255 0.051 - -
0.4851 260 0.0662 - -
0.4944 265 0.0733 - -
0.5037 270 0.0755 - -
0.5131 275 0.0478 - -
0.5224 280 0.0518 - -
0.5317 285 0.0578 - -
0.5410 290 0.0586 - -
0.5504 295 0.0675 - -
0.5597 300 0.057 0.0561 0.8090
0.5690 305 0.0631 - -
0.5784 310 0.0702 - -
0.5877 315 0.0538 - -
0.5970 320 0.0546 - -
0.6063 325 0.0435 - -
0.6157 330 0.0544 - -
0.625 335 0.0424 - -
0.6343 340 0.0398 - -
0.6437 345 0.0452 - -
0.6530 350 0.052 - -
0.6623 355 0.0418 - -
0.6716 360 0.0439 - -
0.6810 365 0.0531 - -
0.6903 370 0.0612 - -
0.6996 375 0.0452 - -
0.7090 380 0.049 - -
0.7183 385 0.0491 - -
0.7276 390 0.0508 - -
0.7369 395 0.066 - -
0.7463 400 0.0465 - -
0.7556 405 0.042 - -
0.7649 410 0.0573 - -
0.7743 415 0.0646 - -
0.7836 420 0.0472 - -
0.7929 425 0.0523 - -
0.8022 430 0.0569 - -
0.8116 435 0.0621 - -
0.8209 440 0.0611 - -
0.8302 445 0.0404 - -
0.8396 450 0.0426 - -
0.8489 455 0.0501 - -
0.8582 460 0.0586 - -
0.8675 465 0.054 - -
0.8769 470 0.0558 - -
0.8862 475 0.0728 - -
0.8955 480 0.0426 - -
0.9049 485 0.0269 - -
0.9142 490 0.0446 - -
0.9235 495 0.0603 - -
0.9328 500 0.0515 - -
0.9422 505 0.0359 - -
0.9515 510 0.0469 - -
0.9608 515 0.0528 - -
0.9701 520 0.0462 - -
0.9795 525 0.0383 - -
0.9888 530 0.0413 - -
0.9981 535 0.0626 - -
1.0075 540 0.0474 - -
1.0168 545 0.0421 - -
1.0261 550 0.0352 - -
1.0354 555 0.0394 - -
1.0448 560 0.0437 - -
1.0541 565 0.0299 - -
1.0634 570 0.0283 - -
1.0728 575 0.0343 - -
1.0821 580 0.0396 - -
1.0914 585 0.0329 - -
1.1007 590 0.0265 - -
1.1101 595 0.0507 - -
1.1194 600 0.0496 0.0432 0.8319
1.1287 605 0.0211 - -
1.1381 610 0.0266 - -
1.1474 615 0.0312 - -
1.1567 620 0.0312 - -
1.1660 625 0.0265 - -
1.1754 630 0.0395 - -
1.1847 635 0.0384 - -
1.1940 640 0.03 - -
1.2034 645 0.0293 - -
1.2127 650 0.0161 - -
1.2220 655 0.0365 - -
1.2313 660 0.0377 - -
1.2407 665 0.0346 - -
1.25 670 0.0478 - -
1.2593 675 0.0401 - -
1.2687 680 0.0523 - -
1.2780 685 0.0347 - -
1.2873 690 0.0421 - -
1.2966 695 0.0281 - -
1.3060 700 0.0277 - -
1.3153 705 0.0317 - -
1.3246 710 0.0504 - -
1.3340 715 0.0344 - -
1.3433 720 0.0371 - -
1.3526 725 0.0406 - -
1.3619 730 0.0346 - -
1.3713 735 0.0376 - -
1.3806 740 0.0416 - -
1.3899 745 0.0453 - -
1.3993 750 0.0529 - -
1.4086 755 0.0398 - -
1.4179 760 0.0328 - -
1.4272 765 0.0362 - -
1.4366 770 0.047 - -
1.4459 775 0.0408 - -
1.4552 780 0.0294 - -
1.4646 785 0.0533 - -
1.4739 790 0.0495 - -
1.4832 795 0.0314 - -
1.4925 800 0.0349 - -
1.5019 805 0.0355 - -
1.5112 810 0.0539 - -
1.5205 815 0.0518 - -
1.5299 820 0.0192 - -
1.5392 825 0.0364 - -
1.5485 830 0.0376 - -
1.5578 835 0.0405 - -
1.5672 840 0.0258 - -
1.5765 845 0.0216 - -
1.5858 850 0.0313 - -
1.5951 855 0.028 - -
1.6045 860 0.0339 - -
1.6138 865 0.033 - -
1.6231 870 0.0466 - -
1.6325 875 0.024 - -
1.6418 880 0.0214 - -
1.6511 885 0.0371 - -
1.6604 890 0.0282 - -
1.6698 895 0.0498 - -
1.6791 900 0.0185 0.0407 0.8339
1.6884 905 0.0271 - -
1.6978 910 0.0186 - -
1.7071 915 0.029 - -
1.7164 920 0.0442 - -
1.7257 925 0.0314 - -
1.7351 930 0.0446 - -
1.7444 935 0.019 - -
1.7537 940 0.0477 - -
1.7631 945 0.0251 - -
1.7724 950 0.0319 - -
1.7817 955 0.0295 - -
1.7910 960 0.0342 - -
1.8004 965 0.0352 - -
1.8097 970 0.032 - -
1.8190 975 0.0221 - -
1.8284 980 0.0424 - -
1.8377 985 0.0406 - -
1.8470 990 0.0354 - -
1.8563 995 0.0419 - -
1.8657 1000 0.0456 - -
1.875 1005 0.0302 - -
1.8843 1010 0.024 - -
1.8937 1015 0.0372 - -
1.9030 1020 0.0133 - -
1.9123 1025 0.0349 - -
1.9216 1030 0.0252 - -
1.9310 1035 0.0272 - -
1.9403 1040 0.0417 - -
1.9496 1045 0.043 - -
1.9590 1050 0.0342 - -
1.9683 1055 0.0276 - -
1.9776 1060 0.0307 - -
1.9869 1065 0.0461 - -
1.9963 1070 0.0422 - -
2.0056 1075 0.0355 - -
2.0149 1080 0.0241 - -
2.0243 1085 0.0222 - -
2.0336 1090 0.0203 - -
2.0429 1095 0.0227 - -
2.0522 1100 0.0162 - -
2.0616 1105 0.0262 - -
2.0709 1110 0.0102 - -
2.0802 1115 0.0181 - -
2.0896 1120 0.028 - -
2.0989 1125 0.0239 - -
2.1082 1130 0.0262 - -
2.1175 1135 0.0323 - -
2.1269 1140 0.0268 - -
2.1362 1145 0.0247 - -
2.1455 1150 0.0182 - -
2.1549 1155 0.019 - -
2.1642 1160 0.0144 - -
2.1735 1165 0.0289 - -
2.1828 1170 0.0236 - -
2.1922 1175 0.0165 - -
2.2015 1180 0.0112 - -
2.2108 1185 0.0281 - -
2.2201 1190 0.0286 - -
2.2295 1195 0.0234 - -
2.2388 1200 0.022 0.0390 0.8324
2.2481 1205 0.0217 - -
2.2575 1210 0.0223 - -
2.2668 1215 0.027 - -
2.2761 1220 0.0429 - -
2.2854 1225 0.0204 - -
2.2948 1230 0.0421 - -
2.3041 1235 0.0109 - -
2.3134 1240 0.0262 - -
2.3228 1245 0.013 - -
2.3321 1250 0.0143 - -
2.3414 1255 0.0291 - -
2.3507 1260 0.0364 - -
2.3601 1265 0.0169 - -
2.3694 1270 0.0211 - -
2.3787 1275 0.0304 - -
2.3881 1280 0.0147 - -
2.3974 1285 0.0295 - -
2.4067 1290 0.0362 - -
2.4160 1295 0.0185 - -
2.4254 1300 0.0166 - -
2.4347 1305 0.0119 - -
2.4440 1310 0.0211 - -
2.4534 1315 0.0208 - -
2.4627 1320 0.0135 - -
2.4720 1325 0.0321 - -
2.4813 1330 0.0229 - -
2.4907 1335 0.0198 - -
2.5 1340 0.028 - -
2.5093 1345 0.0179 - -
2.5187 1350 0.0187 - -
2.5280 1355 0.0309 - -
2.5373 1360 0.0286 - -
2.5466 1365 0.0349 - -
2.5560 1370 0.0247 - -
2.5653 1375 0.0223 - -
2.5746 1380 0.0292 - -
2.5840 1385 0.0152 - -
2.5933 1390 0.0128 - -
2.6026 1395 0.0256 - -
2.6119 1400 0.017 - -
2.6213 1405 0.028 - -
2.6306 1410 0.0228 - -
2.6399 1415 0.023 - -
2.6493 1420 0.0311 - -
2.6586 1425 0.0231 - -
2.6679 1430 0.025 - -
2.6772 1435 0.0188 - -
2.6866 1440 0.0315 - -
2.6959 1445 0.0156 - -
2.7052 1450 0.0352 - -
2.7146 1455 0.0224 - -
2.7239 1460 0.0269 - -
2.7332 1465 0.0217 - -
2.7425 1470 0.0222 - -
2.7519 1475 0.0298 - -
2.7612 1480 0.0182 - -
2.7705 1485 0.0181 - -
2.7799 1490 0.0283 - -
2.7892 1495 0.0238 - -
2.7985 1500 0.0215 0.0366 0.8337
2.8078 1505 0.025 - -
2.8172 1510 0.0207 - -
2.8265 1515 0.0217 - -
2.8358 1520 0.0193 - -
2.8451 1525 0.0123 - -
2.8545 1530 0.0153 - -
2.8638 1535 0.0161 - -
2.8731 1540 0.0234 - -
2.8825 1545 0.0255 - -
2.8918 1550 0.0291 - -
2.9011 1555 0.0229 - -
2.9104 1560 0.0299 - -
2.9198 1565 0.0183 - -
2.9291 1570 0.0245 - -
2.9384 1575 0.0188 - -
2.9478 1580 0.0115 - -
2.9571 1585 0.0284 - -
2.9664 1590 0.0294 - -
2.9757 1595 0.0197 - -
2.9851 1600 0.0313 - -
2.9944 1605 0.0257 - -
3.0037 1610 0.0115 - -
3.0131 1615 0.0193 - -
3.0224 1620 0.0125 - -
3.0317 1625 0.0155 - -
3.0410 1630 0.0258 - -
3.0504 1635 0.0112 - -
3.0597 1640 0.0148 - -
3.0690 1645 0.0095 - -
3.0784 1650 0.0143 - -
3.0877 1655 0.0165 - -
3.0970 1660 0.019 - -
3.1063 1665 0.0154 - -
3.1157 1670 0.0094 - -
3.125 1675 0.0156 - -
3.1343 1680 0.0161 - -
3.1437 1685 0.017 - -
3.1530 1690 0.0249 - -
3.1623 1695 0.0259 - -
3.1716 1700 0.0167 - -
3.1810 1705 0.0166 - -
3.1903 1710 0.02 - -
3.1996 1715 0.018 - -
3.2090 1720 0.0105 - -
3.2183 1725 0.0178 - -
3.2276 1730 0.0173 - -
3.2369 1735 0.0169 - -
3.2463 1740 0.0156 - -
3.2556 1745 0.0151 - -
3.2649 1750 0.0083 - -
3.2743 1755 0.0115 - -
3.2836 1760 0.0167 - -
3.2929 1765 0.0159 - -
3.3022 1770 0.0156 - -
3.3116 1775 0.0203 - -
3.3209 1780 0.0178 - -
3.3302 1785 0.0113 - -
3.3396 1790 0.0084 - -
3.3489 1795 0.015 - -
3.3582 1800 0.0142 0.0353 0.8366
3.3675 1805 0.0088 - -
3.3769 1810 0.0102 - -
3.3862 1815 0.0197 - -
3.3955 1820 0.0191 - -
3.4049 1825 0.0182 - -
3.4142 1830 0.0225 - -
3.4235 1835 0.0241 - -
3.4328 1840 0.0302 - -
3.4422 1845 0.0174 - -
3.4515 1850 0.0171 - -
3.4608 1855 0.0114 - -
3.4701 1860 0.0086 - -
3.4795 1865 0.0144 - -
3.4888 1870 0.0151 - -
3.4981 1875 0.0139 - -
3.5075 1880 0.0103 - -
3.5168 1885 0.0171 - -
3.5261 1890 0.0086 - -
3.5354 1895 0.0234 - -
3.5448 1900 0.008 - -
3.5541 1905 0.0098 - -
3.5634 1910 0.0159 - -
3.5728 1915 0.0204 - -
3.5821 1920 0.0152 - -
3.5914 1925 0.0183 - -
3.6007 1930 0.0169 - -
3.6101 1935 0.0135 - -
3.6194 1940 0.0191 - -
3.6287 1945 0.0217 - -
3.6381 1950 0.0152 - -
3.6474 1955 0.0104 - -
3.6567 1960 0.0203 - -
3.6660 1965 0.0098 - -
3.6754 1970 0.0217 - -
3.6847 1975 0.0192 - -
3.6940 1980 0.0138 - -
3.7034 1985 0.0239 - -
3.7127 1990 0.0237 - -
3.7220 1995 0.011 - -
3.7313 2000 0.0161 - -
3.7407 2005 0.016 - -
3.75 2010 0.0118 - -
3.7593 2015 0.0124 - -
3.7687 2020 0.0152 - -
3.7780 2025 0.0171 - -
3.7873 2030 0.018 - -
3.7966 2035 0.0131 - -
3.8060 2040 0.0178 - -
3.8153 2045 0.0251 - -
3.8246 2050 0.0124 - -
3.8340 2055 0.0189 - -
3.8433 2060 0.0244 - -
3.8526 2065 0.0169 - -
3.8619 2070 0.0184 - -
3.8713 2075 0.019 - -
3.8806 2080 0.0104 - -
3.8899 2085 0.0266 - -
3.8993 2090 0.0136 - -
3.9086 2095 0.0129 - -
3.9179 2100 0.0103 0.0353 0.8357
3.9272 2105 0.0085 - -
3.9366 2110 0.0262 - -
3.9459 2115 0.0198 - -
3.9552 2120 0.0069 - -
3.9646 2125 0.0139 - -
3.9739 2130 0.014 - -
3.9832 2135 0.0197 - -
3.9925 2140 0.0146 - -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 2.14.4
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
2
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SenhorDasMoscas/acho-ptbr-e4-lr3e-05-29-12-2024

Finetuned
(43)
this model

Evaluation results