SentenceTransformer based on neuralmind/bert-large-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-large-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SenhorDasMoscas/acho-ptbr-e4-lr3e-05-29-12-2024")
# Run inference
sentences = [
'circulo mdf decorar',
'decoracao festa',
'moda acessorio',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval-similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9114 |
spearman_cosine | 0.8357 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 17,147 training samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.53 tokens
- max: 18 tokens
- min: 3 tokens
- mean: 6.34 tokens
- max: 11 tokens
- min: 0.1
- mean: 0.56
- max: 1.0
- Samples:
text1 text2 label batedor manual massa
livro material literario
0.1
procuro cerveja Chimay
bebida alcoolico
1.0
livro ficcao cientifico
item colecao
0.1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,906 evaluation samples
- Columns:
text1
,text2
, andlabel
- Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 3 tokens
- mean: 7.58 tokens
- max: 16 tokens
- min: 3 tokens
- mean: 6.35 tokens
- max: 11 tokens
- min: 0.1
- mean: 0.55
- max: 1.0
- Samples:
text1 text2 label alugar barco passeio
servico area educacao
0.1
pneu Michelin Primacy 4 195/55r15
peca acessorio automotivo
1.0
querer heineken bem gelado
bebida alcoolico
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 3e-05weight_decay
: 0.1num_train_epochs
: 4warmup_ratio
: 0.1warmup_steps
: 214fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.1adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 214log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | eval-similarity_spearman_cosine |
---|---|---|---|---|
0.0093 | 5 | 0.2225 | - | - |
0.0187 | 10 | 0.2123 | - | - |
0.0280 | 15 | 0.2135 | - | - |
0.0373 | 20 | 0.2118 | - | - |
0.0466 | 25 | 0.1799 | - | - |
0.0560 | 30 | 0.1873 | - | - |
0.0653 | 35 | 0.1685 | - | - |
0.0746 | 40 | 0.1646 | - | - |
0.0840 | 45 | 0.1619 | - | - |
0.0933 | 50 | 0.1451 | - | - |
0.1026 | 55 | 0.1444 | - | - |
0.1119 | 60 | 0.1492 | - | - |
0.1213 | 65 | 0.1262 | - | - |
0.1306 | 70 | 0.1213 | - | - |
0.1399 | 75 | 0.112 | - | - |
0.1493 | 80 | 0.1119 | - | - |
0.1586 | 85 | 0.0931 | - | - |
0.1679 | 90 | 0.0962 | - | - |
0.1772 | 95 | 0.1061 | - | - |
0.1866 | 100 | 0.0912 | - | - |
0.1959 | 105 | 0.0738 | - | - |
0.2052 | 110 | 0.0899 | - | - |
0.2146 | 115 | 0.075 | - | - |
0.2239 | 120 | 0.0757 | - | - |
0.2332 | 125 | 0.0734 | - | - |
0.2425 | 130 | 0.0652 | - | - |
0.2519 | 135 | 0.0676 | - | - |
0.2612 | 140 | 0.071 | - | - |
0.2705 | 145 | 0.0685 | - | - |
0.2799 | 150 | 0.0813 | - | - |
0.2892 | 155 | 0.0764 | - | - |
0.2985 | 160 | 0.085 | - | - |
0.3078 | 165 | 0.0701 | - | - |
0.3172 | 170 | 0.0509 | - | - |
0.3265 | 175 | 0.0719 | - | - |
0.3358 | 180 | 0.0671 | - | - |
0.3451 | 185 | 0.0599 | - | - |
0.3545 | 190 | 0.0691 | - | - |
0.3638 | 195 | 0.0839 | - | - |
0.3731 | 200 | 0.0713 | - | - |
0.3825 | 205 | 0.0681 | - | - |
0.3918 | 210 | 0.0487 | - | - |
0.4011 | 215 | 0.0596 | - | - |
0.4104 | 220 | 0.0554 | - | - |
0.4198 | 225 | 0.07 | - | - |
0.4291 | 230 | 0.0648 | - | - |
0.4384 | 235 | 0.0637 | - | - |
0.4478 | 240 | 0.0412 | - | - |
0.4571 | 245 | 0.0705 | - | - |
0.4664 | 250 | 0.0642 | - | - |
0.4757 | 255 | 0.051 | - | - |
0.4851 | 260 | 0.0662 | - | - |
0.4944 | 265 | 0.0733 | - | - |
0.5037 | 270 | 0.0755 | - | - |
0.5131 | 275 | 0.0478 | - | - |
0.5224 | 280 | 0.0518 | - | - |
0.5317 | 285 | 0.0578 | - | - |
0.5410 | 290 | 0.0586 | - | - |
0.5504 | 295 | 0.0675 | - | - |
0.5597 | 300 | 0.057 | 0.0561 | 0.8090 |
0.5690 | 305 | 0.0631 | - | - |
0.5784 | 310 | 0.0702 | - | - |
0.5877 | 315 | 0.0538 | - | - |
0.5970 | 320 | 0.0546 | - | - |
0.6063 | 325 | 0.0435 | - | - |
0.6157 | 330 | 0.0544 | - | - |
0.625 | 335 | 0.0424 | - | - |
0.6343 | 340 | 0.0398 | - | - |
0.6437 | 345 | 0.0452 | - | - |
0.6530 | 350 | 0.052 | - | - |
0.6623 | 355 | 0.0418 | - | - |
0.6716 | 360 | 0.0439 | - | - |
0.6810 | 365 | 0.0531 | - | - |
0.6903 | 370 | 0.0612 | - | - |
0.6996 | 375 | 0.0452 | - | - |
0.7090 | 380 | 0.049 | - | - |
0.7183 | 385 | 0.0491 | - | - |
0.7276 | 390 | 0.0508 | - | - |
0.7369 | 395 | 0.066 | - | - |
0.7463 | 400 | 0.0465 | - | - |
0.7556 | 405 | 0.042 | - | - |
0.7649 | 410 | 0.0573 | - | - |
0.7743 | 415 | 0.0646 | - | - |
0.7836 | 420 | 0.0472 | - | - |
0.7929 | 425 | 0.0523 | - | - |
0.8022 | 430 | 0.0569 | - | - |
0.8116 | 435 | 0.0621 | - | - |
0.8209 | 440 | 0.0611 | - | - |
0.8302 | 445 | 0.0404 | - | - |
0.8396 | 450 | 0.0426 | - | - |
0.8489 | 455 | 0.0501 | - | - |
0.8582 | 460 | 0.0586 | - | - |
0.8675 | 465 | 0.054 | - | - |
0.8769 | 470 | 0.0558 | - | - |
0.8862 | 475 | 0.0728 | - | - |
0.8955 | 480 | 0.0426 | - | - |
0.9049 | 485 | 0.0269 | - | - |
0.9142 | 490 | 0.0446 | - | - |
0.9235 | 495 | 0.0603 | - | - |
0.9328 | 500 | 0.0515 | - | - |
0.9422 | 505 | 0.0359 | - | - |
0.9515 | 510 | 0.0469 | - | - |
0.9608 | 515 | 0.0528 | - | - |
0.9701 | 520 | 0.0462 | - | - |
0.9795 | 525 | 0.0383 | - | - |
0.9888 | 530 | 0.0413 | - | - |
0.9981 | 535 | 0.0626 | - | - |
1.0075 | 540 | 0.0474 | - | - |
1.0168 | 545 | 0.0421 | - | - |
1.0261 | 550 | 0.0352 | - | - |
1.0354 | 555 | 0.0394 | - | - |
1.0448 | 560 | 0.0437 | - | - |
1.0541 | 565 | 0.0299 | - | - |
1.0634 | 570 | 0.0283 | - | - |
1.0728 | 575 | 0.0343 | - | - |
1.0821 | 580 | 0.0396 | - | - |
1.0914 | 585 | 0.0329 | - | - |
1.1007 | 590 | 0.0265 | - | - |
1.1101 | 595 | 0.0507 | - | - |
1.1194 | 600 | 0.0496 | 0.0432 | 0.8319 |
1.1287 | 605 | 0.0211 | - | - |
1.1381 | 610 | 0.0266 | - | - |
1.1474 | 615 | 0.0312 | - | - |
1.1567 | 620 | 0.0312 | - | - |
1.1660 | 625 | 0.0265 | - | - |
1.1754 | 630 | 0.0395 | - | - |
1.1847 | 635 | 0.0384 | - | - |
1.1940 | 640 | 0.03 | - | - |
1.2034 | 645 | 0.0293 | - | - |
1.2127 | 650 | 0.0161 | - | - |
1.2220 | 655 | 0.0365 | - | - |
1.2313 | 660 | 0.0377 | - | - |
1.2407 | 665 | 0.0346 | - | - |
1.25 | 670 | 0.0478 | - | - |
1.2593 | 675 | 0.0401 | - | - |
1.2687 | 680 | 0.0523 | - | - |
1.2780 | 685 | 0.0347 | - | - |
1.2873 | 690 | 0.0421 | - | - |
1.2966 | 695 | 0.0281 | - | - |
1.3060 | 700 | 0.0277 | - | - |
1.3153 | 705 | 0.0317 | - | - |
1.3246 | 710 | 0.0504 | - | - |
1.3340 | 715 | 0.0344 | - | - |
1.3433 | 720 | 0.0371 | - | - |
1.3526 | 725 | 0.0406 | - | - |
1.3619 | 730 | 0.0346 | - | - |
1.3713 | 735 | 0.0376 | - | - |
1.3806 | 740 | 0.0416 | - | - |
1.3899 | 745 | 0.0453 | - | - |
1.3993 | 750 | 0.0529 | - | - |
1.4086 | 755 | 0.0398 | - | - |
1.4179 | 760 | 0.0328 | - | - |
1.4272 | 765 | 0.0362 | - | - |
1.4366 | 770 | 0.047 | - | - |
1.4459 | 775 | 0.0408 | - | - |
1.4552 | 780 | 0.0294 | - | - |
1.4646 | 785 | 0.0533 | - | - |
1.4739 | 790 | 0.0495 | - | - |
1.4832 | 795 | 0.0314 | - | - |
1.4925 | 800 | 0.0349 | - | - |
1.5019 | 805 | 0.0355 | - | - |
1.5112 | 810 | 0.0539 | - | - |
1.5205 | 815 | 0.0518 | - | - |
1.5299 | 820 | 0.0192 | - | - |
1.5392 | 825 | 0.0364 | - | - |
1.5485 | 830 | 0.0376 | - | - |
1.5578 | 835 | 0.0405 | - | - |
1.5672 | 840 | 0.0258 | - | - |
1.5765 | 845 | 0.0216 | - | - |
1.5858 | 850 | 0.0313 | - | - |
1.5951 | 855 | 0.028 | - | - |
1.6045 | 860 | 0.0339 | - | - |
1.6138 | 865 | 0.033 | - | - |
1.6231 | 870 | 0.0466 | - | - |
1.6325 | 875 | 0.024 | - | - |
1.6418 | 880 | 0.0214 | - | - |
1.6511 | 885 | 0.0371 | - | - |
1.6604 | 890 | 0.0282 | - | - |
1.6698 | 895 | 0.0498 | - | - |
1.6791 | 900 | 0.0185 | 0.0407 | 0.8339 |
1.6884 | 905 | 0.0271 | - | - |
1.6978 | 910 | 0.0186 | - | - |
1.7071 | 915 | 0.029 | - | - |
1.7164 | 920 | 0.0442 | - | - |
1.7257 | 925 | 0.0314 | - | - |
1.7351 | 930 | 0.0446 | - | - |
1.7444 | 935 | 0.019 | - | - |
1.7537 | 940 | 0.0477 | - | - |
1.7631 | 945 | 0.0251 | - | - |
1.7724 | 950 | 0.0319 | - | - |
1.7817 | 955 | 0.0295 | - | - |
1.7910 | 960 | 0.0342 | - | - |
1.8004 | 965 | 0.0352 | - | - |
1.8097 | 970 | 0.032 | - | - |
1.8190 | 975 | 0.0221 | - | - |
1.8284 | 980 | 0.0424 | - | - |
1.8377 | 985 | 0.0406 | - | - |
1.8470 | 990 | 0.0354 | - | - |
1.8563 | 995 | 0.0419 | - | - |
1.8657 | 1000 | 0.0456 | - | - |
1.875 | 1005 | 0.0302 | - | - |
1.8843 | 1010 | 0.024 | - | - |
1.8937 | 1015 | 0.0372 | - | - |
1.9030 | 1020 | 0.0133 | - | - |
1.9123 | 1025 | 0.0349 | - | - |
1.9216 | 1030 | 0.0252 | - | - |
1.9310 | 1035 | 0.0272 | - | - |
1.9403 | 1040 | 0.0417 | - | - |
1.9496 | 1045 | 0.043 | - | - |
1.9590 | 1050 | 0.0342 | - | - |
1.9683 | 1055 | 0.0276 | - | - |
1.9776 | 1060 | 0.0307 | - | - |
1.9869 | 1065 | 0.0461 | - | - |
1.9963 | 1070 | 0.0422 | - | - |
2.0056 | 1075 | 0.0355 | - | - |
2.0149 | 1080 | 0.0241 | - | - |
2.0243 | 1085 | 0.0222 | - | - |
2.0336 | 1090 | 0.0203 | - | - |
2.0429 | 1095 | 0.0227 | - | - |
2.0522 | 1100 | 0.0162 | - | - |
2.0616 | 1105 | 0.0262 | - | - |
2.0709 | 1110 | 0.0102 | - | - |
2.0802 | 1115 | 0.0181 | - | - |
2.0896 | 1120 | 0.028 | - | - |
2.0989 | 1125 | 0.0239 | - | - |
2.1082 | 1130 | 0.0262 | - | - |
2.1175 | 1135 | 0.0323 | - | - |
2.1269 | 1140 | 0.0268 | - | - |
2.1362 | 1145 | 0.0247 | - | - |
2.1455 | 1150 | 0.0182 | - | - |
2.1549 | 1155 | 0.019 | - | - |
2.1642 | 1160 | 0.0144 | - | - |
2.1735 | 1165 | 0.0289 | - | - |
2.1828 | 1170 | 0.0236 | - | - |
2.1922 | 1175 | 0.0165 | - | - |
2.2015 | 1180 | 0.0112 | - | - |
2.2108 | 1185 | 0.0281 | - | - |
2.2201 | 1190 | 0.0286 | - | - |
2.2295 | 1195 | 0.0234 | - | - |
2.2388 | 1200 | 0.022 | 0.0390 | 0.8324 |
2.2481 | 1205 | 0.0217 | - | - |
2.2575 | 1210 | 0.0223 | - | - |
2.2668 | 1215 | 0.027 | - | - |
2.2761 | 1220 | 0.0429 | - | - |
2.2854 | 1225 | 0.0204 | - | - |
2.2948 | 1230 | 0.0421 | - | - |
2.3041 | 1235 | 0.0109 | - | - |
2.3134 | 1240 | 0.0262 | - | - |
2.3228 | 1245 | 0.013 | - | - |
2.3321 | 1250 | 0.0143 | - | - |
2.3414 | 1255 | 0.0291 | - | - |
2.3507 | 1260 | 0.0364 | - | - |
2.3601 | 1265 | 0.0169 | - | - |
2.3694 | 1270 | 0.0211 | - | - |
2.3787 | 1275 | 0.0304 | - | - |
2.3881 | 1280 | 0.0147 | - | - |
2.3974 | 1285 | 0.0295 | - | - |
2.4067 | 1290 | 0.0362 | - | - |
2.4160 | 1295 | 0.0185 | - | - |
2.4254 | 1300 | 0.0166 | - | - |
2.4347 | 1305 | 0.0119 | - | - |
2.4440 | 1310 | 0.0211 | - | - |
2.4534 | 1315 | 0.0208 | - | - |
2.4627 | 1320 | 0.0135 | - | - |
2.4720 | 1325 | 0.0321 | - | - |
2.4813 | 1330 | 0.0229 | - | - |
2.4907 | 1335 | 0.0198 | - | - |
2.5 | 1340 | 0.028 | - | - |
2.5093 | 1345 | 0.0179 | - | - |
2.5187 | 1350 | 0.0187 | - | - |
2.5280 | 1355 | 0.0309 | - | - |
2.5373 | 1360 | 0.0286 | - | - |
2.5466 | 1365 | 0.0349 | - | - |
2.5560 | 1370 | 0.0247 | - | - |
2.5653 | 1375 | 0.0223 | - | - |
2.5746 | 1380 | 0.0292 | - | - |
2.5840 | 1385 | 0.0152 | - | - |
2.5933 | 1390 | 0.0128 | - | - |
2.6026 | 1395 | 0.0256 | - | - |
2.6119 | 1400 | 0.017 | - | - |
2.6213 | 1405 | 0.028 | - | - |
2.6306 | 1410 | 0.0228 | - | - |
2.6399 | 1415 | 0.023 | - | - |
2.6493 | 1420 | 0.0311 | - | - |
2.6586 | 1425 | 0.0231 | - | - |
2.6679 | 1430 | 0.025 | - | - |
2.6772 | 1435 | 0.0188 | - | - |
2.6866 | 1440 | 0.0315 | - | - |
2.6959 | 1445 | 0.0156 | - | - |
2.7052 | 1450 | 0.0352 | - | - |
2.7146 | 1455 | 0.0224 | - | - |
2.7239 | 1460 | 0.0269 | - | - |
2.7332 | 1465 | 0.0217 | - | - |
2.7425 | 1470 | 0.0222 | - | - |
2.7519 | 1475 | 0.0298 | - | - |
2.7612 | 1480 | 0.0182 | - | - |
2.7705 | 1485 | 0.0181 | - | - |
2.7799 | 1490 | 0.0283 | - | - |
2.7892 | 1495 | 0.0238 | - | - |
2.7985 | 1500 | 0.0215 | 0.0366 | 0.8337 |
2.8078 | 1505 | 0.025 | - | - |
2.8172 | 1510 | 0.0207 | - | - |
2.8265 | 1515 | 0.0217 | - | - |
2.8358 | 1520 | 0.0193 | - | - |
2.8451 | 1525 | 0.0123 | - | - |
2.8545 | 1530 | 0.0153 | - | - |
2.8638 | 1535 | 0.0161 | - | - |
2.8731 | 1540 | 0.0234 | - | - |
2.8825 | 1545 | 0.0255 | - | - |
2.8918 | 1550 | 0.0291 | - | - |
2.9011 | 1555 | 0.0229 | - | - |
2.9104 | 1560 | 0.0299 | - | - |
2.9198 | 1565 | 0.0183 | - | - |
2.9291 | 1570 | 0.0245 | - | - |
2.9384 | 1575 | 0.0188 | - | - |
2.9478 | 1580 | 0.0115 | - | - |
2.9571 | 1585 | 0.0284 | - | - |
2.9664 | 1590 | 0.0294 | - | - |
2.9757 | 1595 | 0.0197 | - | - |
2.9851 | 1600 | 0.0313 | - | - |
2.9944 | 1605 | 0.0257 | - | - |
3.0037 | 1610 | 0.0115 | - | - |
3.0131 | 1615 | 0.0193 | - | - |
3.0224 | 1620 | 0.0125 | - | - |
3.0317 | 1625 | 0.0155 | - | - |
3.0410 | 1630 | 0.0258 | - | - |
3.0504 | 1635 | 0.0112 | - | - |
3.0597 | 1640 | 0.0148 | - | - |
3.0690 | 1645 | 0.0095 | - | - |
3.0784 | 1650 | 0.0143 | - | - |
3.0877 | 1655 | 0.0165 | - | - |
3.0970 | 1660 | 0.019 | - | - |
3.1063 | 1665 | 0.0154 | - | - |
3.1157 | 1670 | 0.0094 | - | - |
3.125 | 1675 | 0.0156 | - | - |
3.1343 | 1680 | 0.0161 | - | - |
3.1437 | 1685 | 0.017 | - | - |
3.1530 | 1690 | 0.0249 | - | - |
3.1623 | 1695 | 0.0259 | - | - |
3.1716 | 1700 | 0.0167 | - | - |
3.1810 | 1705 | 0.0166 | - | - |
3.1903 | 1710 | 0.02 | - | - |
3.1996 | 1715 | 0.018 | - | - |
3.2090 | 1720 | 0.0105 | - | - |
3.2183 | 1725 | 0.0178 | - | - |
3.2276 | 1730 | 0.0173 | - | - |
3.2369 | 1735 | 0.0169 | - | - |
3.2463 | 1740 | 0.0156 | - | - |
3.2556 | 1745 | 0.0151 | - | - |
3.2649 | 1750 | 0.0083 | - | - |
3.2743 | 1755 | 0.0115 | - | - |
3.2836 | 1760 | 0.0167 | - | - |
3.2929 | 1765 | 0.0159 | - | - |
3.3022 | 1770 | 0.0156 | - | - |
3.3116 | 1775 | 0.0203 | - | - |
3.3209 | 1780 | 0.0178 | - | - |
3.3302 | 1785 | 0.0113 | - | - |
3.3396 | 1790 | 0.0084 | - | - |
3.3489 | 1795 | 0.015 | - | - |
3.3582 | 1800 | 0.0142 | 0.0353 | 0.8366 |
3.3675 | 1805 | 0.0088 | - | - |
3.3769 | 1810 | 0.0102 | - | - |
3.3862 | 1815 | 0.0197 | - | - |
3.3955 | 1820 | 0.0191 | - | - |
3.4049 | 1825 | 0.0182 | - | - |
3.4142 | 1830 | 0.0225 | - | - |
3.4235 | 1835 | 0.0241 | - | - |
3.4328 | 1840 | 0.0302 | - | - |
3.4422 | 1845 | 0.0174 | - | - |
3.4515 | 1850 | 0.0171 | - | - |
3.4608 | 1855 | 0.0114 | - | - |
3.4701 | 1860 | 0.0086 | - | - |
3.4795 | 1865 | 0.0144 | - | - |
3.4888 | 1870 | 0.0151 | - | - |
3.4981 | 1875 | 0.0139 | - | - |
3.5075 | 1880 | 0.0103 | - | - |
3.5168 | 1885 | 0.0171 | - | - |
3.5261 | 1890 | 0.0086 | - | - |
3.5354 | 1895 | 0.0234 | - | - |
3.5448 | 1900 | 0.008 | - | - |
3.5541 | 1905 | 0.0098 | - | - |
3.5634 | 1910 | 0.0159 | - | - |
3.5728 | 1915 | 0.0204 | - | - |
3.5821 | 1920 | 0.0152 | - | - |
3.5914 | 1925 | 0.0183 | - | - |
3.6007 | 1930 | 0.0169 | - | - |
3.6101 | 1935 | 0.0135 | - | - |
3.6194 | 1940 | 0.0191 | - | - |
3.6287 | 1945 | 0.0217 | - | - |
3.6381 | 1950 | 0.0152 | - | - |
3.6474 | 1955 | 0.0104 | - | - |
3.6567 | 1960 | 0.0203 | - | - |
3.6660 | 1965 | 0.0098 | - | - |
3.6754 | 1970 | 0.0217 | - | - |
3.6847 | 1975 | 0.0192 | - | - |
3.6940 | 1980 | 0.0138 | - | - |
3.7034 | 1985 | 0.0239 | - | - |
3.7127 | 1990 | 0.0237 | - | - |
3.7220 | 1995 | 0.011 | - | - |
3.7313 | 2000 | 0.0161 | - | - |
3.7407 | 2005 | 0.016 | - | - |
3.75 | 2010 | 0.0118 | - | - |
3.7593 | 2015 | 0.0124 | - | - |
3.7687 | 2020 | 0.0152 | - | - |
3.7780 | 2025 | 0.0171 | - | - |
3.7873 | 2030 | 0.018 | - | - |
3.7966 | 2035 | 0.0131 | - | - |
3.8060 | 2040 | 0.0178 | - | - |
3.8153 | 2045 | 0.0251 | - | - |
3.8246 | 2050 | 0.0124 | - | - |
3.8340 | 2055 | 0.0189 | - | - |
3.8433 | 2060 | 0.0244 | - | - |
3.8526 | 2065 | 0.0169 | - | - |
3.8619 | 2070 | 0.0184 | - | - |
3.8713 | 2075 | 0.019 | - | - |
3.8806 | 2080 | 0.0104 | - | - |
3.8899 | 2085 | 0.0266 | - | - |
3.8993 | 2090 | 0.0136 | - | - |
3.9086 | 2095 | 0.0129 | - | - |
3.9179 | 2100 | 0.0103 | 0.0353 | 0.8357 |
3.9272 | 2105 | 0.0085 | - | - |
3.9366 | 2110 | 0.0262 | - | - |
3.9459 | 2115 | 0.0198 | - | - |
3.9552 | 2120 | 0.0069 | - | - |
3.9646 | 2125 | 0.0139 | - | - |
3.9739 | 2130 | 0.014 | - | - |
3.9832 | 2135 | 0.0197 | - | - |
3.9925 | 2140 | 0.0146 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 2.14.4
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for SenhorDasMoscas/acho-ptbr-e4-lr3e-05-29-12-2024
Base model
neuralmind/bert-large-portuguese-casedEvaluation results
- Pearson Cosine on eval similarityself-reported0.911
- Spearman Cosine on eval similarityself-reported0.836