File size: 1,469 Bytes
812b38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- LLM
- Universal-NER
- NER
- 4bit
inference: false
---
![image](qunatized_lama_color_letters_4bit_512px.png)

# Quantized version of Universal-NER/UniNER-7B-type-sub

[Universal-NER/UniNER-7B-type-sub](https://huggingface.co/Universal-NER/UniNER-7B-type-sup) quantized to 4bit with GPTQ and stored with 1GB shard size.

## Model Description

The model [Universal-NER/UniNER-7B-type-sub](https://huggingface.co/Universal-NER/UniNER-7B-type-sup) was quantized to 4bit, group_size 128, and act-order=True with auto-gptq integration in transformers (https://huggingface.co/blog/gptq-integration).

## Evaluation
TODO

## Prompt template

Prompt template is the same as for the full precision model:

```python
prompt_template = """A virtual assistant answers questions from a user based on the provided text.
USER: Text: {input_text}
ASSISTANT: I’ve read this text.
USER: What describes {entity_name} in the text?
ASSISTANT:
"""
```

## Usage

It is recommended to format input according to the prompt template mentioned above during inference for best results.

```python
prompt = prompt_template.format_map({"input_text": "Cologne is a great city in Germany - maybe even the greatest ;)", "entity_name": "city"})
```


## License
The original full precision model and its associated data are released under the CC BY-NC 4.0 license. Hence, the same license applies for the 4bit version.