Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3734
  • Accuracy: {'accuracy': 0.6005221932114883}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 192 1.8883 {'accuracy': 0.36945169712793735}
No log 2.0 384 1.6563 {'accuracy': 0.4216710182767624}
1.8736 3.0 576 1.5385 {'accuracy': 0.46736292428198434}
1.8736 4.0 768 1.4276 {'accuracy': 0.5274151436031331}
1.8736 5.0 960 1.3666 {'accuracy': 0.5613577023498695}
1.2939 6.0 1152 1.3688 {'accuracy': 0.5613577023498695}
1.2939 7.0 1344 1.3397 {'accuracy': 0.5783289817232375}
0.9487 8.0 1536 1.3576 {'accuracy': 0.5757180156657964}
0.9487 9.0 1728 1.3523 {'accuracy': 0.5939947780678851}
0.9487 10.0 1920 1.3819 {'accuracy': 0.5926892950391645}
0.7324 11.0 2112 1.3746 {'accuracy': 0.597911227154047}
0.7324 12.0 2304 1.3734 {'accuracy': 0.6005221932114883}

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Saurabh54/distilbert-base-uncased-lora-text-classification

Finetuned
(6783)
this model