ProLIP
Collection
Official ProLIP weights
•
4 items
•
Updated
•
3
[CLS]
token for pooling, while the original SIGLIP model uses attention pooling.[CLS]
token, while the original model does not.import requests
from PIL import Image
import torch
from prolip.model import ProLIPHF
from transformers import CLIPProcessor
from prolip.tokenizer import HFTokenizer
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
model = ProLIPHF.from_pretrained("SanghyukChun/ProLIP-ViT-L-16-FT-DC-1B-1_28M")
tokenizer = HFTokenizer("timm/ViT-B-16-SigLIP", context_length=64, clean="canonicalize")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt", padding=True)
texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"]
texts = tokenizer(texts)
outputs = model(image=inputs["pixel_values"], text=texts)
l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1)
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1)
csd_logit = l2_logit - 0.5 * t_unc
csd_logit2 = l2_logit.T - 0.5 * i_unc
print("Mean-only image-to-text logits (by L2 distance):", l2_logit)
print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit)
print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T)
print("Image uncertainty: ", i_unc)
print("Text uncertainty: ", t_unc)
@article{chun2024prolip,
title={Probabilistic Language-Image Pre-Training},
author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo},
journal={arXiv preprint arXiv:2410.18857},
year={2024}
}
Base model
timm/ViT-L-16-SigLIP-256