File size: 27,877 Bytes
20e841b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
import glob
import json
import os
import shutil
import operator
import sys
import argparse
from absl import app, flags, logging
from absl.flags import FLAGS
MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge)
parser = argparse.ArgumentParser()
parser.add_argument('-na', '--no-animation',default=True, help="no animation is shown.", action="store_true")
parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true")
parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true")
# argparse receiving list of classes to be ignored
parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.")
parser.add_argument('-o', '--output', default="results", type=str, help="output path name")
# argparse receiving list of classes with specific IoU
parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.")
args = parser.parse_args()
# if there are no classes to ignore then replace None by empty list
if args.ignore is None:
args.ignore = []
specific_iou_flagged = False
if args.set_class_iou is not None:
specific_iou_flagged = True
# if there are no images then no animation can be shown
img_path = 'images'
if os.path.exists(img_path):
for dirpath, dirnames, files in os.walk(img_path):
if not files:
# no image files found
args.no_animation = True
else:
args.no_animation = True
# try to import OpenCV if the user didn't choose the option --no-animation
show_animation = False
if not args.no_animation:
try:
import cv2
show_animation = True
except ImportError:
print("\"opencv-python\" not found, please install to visualize the results.")
args.no_animation = True
# try to import Matplotlib if the user didn't choose the option --no-plot
draw_plot = False
if not args.no_plot:
try:
import matplotlib.pyplot as plt
draw_plot = True
except ImportError:
print("\"matplotlib\" not found, please install it to get the resulting plots.")
args.no_plot = True
"""
throw error and exit
"""
def error(msg):
print(msg)
sys.exit(0)
"""
check if the number is a float between 0.0 and 1.0
"""
def is_float_between_0_and_1(value):
try:
val = float(value)
if val > 0.0 and val < 1.0:
return True
else:
return False
except ValueError:
return False
"""
Calculate the AP given the recall and precision array
1st) We compute a version of the measured precision/recall curve with
precision monotonically decreasing
2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 0.0 at end of list
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
matlab: for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
"""
# matlab indexes start in 1 but python in 0, so I have to do:
# range(start=(len(mpre) - 2), end=0, step=-1)
# also the python function range excludes the end, resulting in:
# range(start=(len(mpre) - 2), end=-1, step=-1)
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
"""
This part creates a list of indexes where the recall changes
matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
"""
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i-1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
ap = 0.0
for i in i_list:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
"""
Convert the lines of a file to a list
"""
def file_lines_to_list(path):
# open txt file lines to a list
with open(path) as f:
content = f.readlines()
# remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
return content
"""
Draws text in image
"""
def draw_text_in_image(img, text, pos, color, line_width):
font = cv2.FONT_HERSHEY_PLAIN
fontScale = 1
lineType = 1
bottomLeftCornerOfText = pos
cv2.putText(img, text,
bottomLeftCornerOfText,
font,
fontScale,
color,
lineType)
text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
return img, (line_width + text_width)
"""
Plot - adjust axes
"""
def adjust_axes(r, t, fig, axes):
# get text width for re-scaling
bb = t.get_window_extent(renderer=r)
text_width_inches = bb.width / fig.dpi
# get axis width in inches
current_fig_width = fig.get_figwidth()
new_fig_width = current_fig_width + text_width_inches
propotion = new_fig_width / current_fig_width
# get axis limit
x_lim = axes.get_xlim()
axes.set_xlim([x_lim[0], x_lim[1]*propotion])
"""
Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
# sort the dictionary by decreasing value, into a list of tuples
sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
# unpacking the list of tuples into two lists
sorted_keys, sorted_values = zip(*sorted_dic_by_value)
#
if true_p_bar != "":
"""
Special case to draw in (green=true predictions) & (red=false predictions)
"""
fp_sorted = []
tp_sorted = []
for key in sorted_keys:
fp_sorted.append(dictionary[key] - true_p_bar[key])
tp_sorted.append(true_p_bar[key])
plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Predictions')
plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Predictions', left=fp_sorted)
# add legend
plt.legend(loc='lower right')
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
fp_val = fp_sorted[i]
tp_val = tp_sorted[i]
fp_str_val = " " + str(fp_val)
tp_str_val = fp_str_val + " " + str(tp_val)
# trick to paint multicolor with offset:
# first paint everything and then repaint the first number
t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
else:
plt.barh(range(n_classes), sorted_values, color=plot_color)
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
str_val = " " + str(val) # add a space before
if val < 1.0:
str_val = " {0:.2f}".format(val)
t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
# re-set axes to show number inside the figure
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
# set window title
fig.canvas.set_window_title(window_title)
# write classes in y axis
tick_font_size = 12
plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
"""
Re-scale height accordingly
"""
init_height = fig.get_figheight()
# comput the matrix height in points and inches
dpi = fig.dpi
height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
height_in = height_pt / dpi
# compute the required figure height
top_margin = 0.15 # in percentage of the figure height
bottom_margin = 0.05 # in percentage of the figure height
figure_height = height_in / (1 - top_margin - bottom_margin)
# set new height
if figure_height > init_height:
fig.set_figheight(figure_height)
# set plot title
plt.title(plot_title, fontsize=14)
# set axis titles
# plt.xlabel('classes')
plt.xlabel(x_label, fontsize='large')
# adjust size of window
fig.tight_layout()
# save the plot
fig.savefig(output_path)
# show image
if to_show:
plt.show()
# close the plot
plt.close()
"""
Create a "tmp_files/" and "results/" directory
"""
tmp_files_path = "tmp_files"
if not os.path.exists(tmp_files_path): # if it doesn't exist already
os.makedirs(tmp_files_path)
results_files_path = args.output
if os.path.exists(results_files_path): # if it exist already
# reset the results directory
shutil.rmtree(results_files_path)
os.makedirs(results_files_path)
if draw_plot:
os.makedirs(results_files_path + "/classes")
if show_animation:
os.makedirs(results_files_path + "/images")
os.makedirs(results_files_path + "/images/single_predictions")
"""
Ground-Truth
Load each of the ground-truth files into a temporary ".json" file.
Create a list of all the class names present in the ground-truth (gt_classes).
"""
# get a list with the ground-truth files
ground_truth_files_list = glob.glob('ground-truth/*.txt')
if len(ground_truth_files_list) == 0:
error("Error: No ground-truth files found!")
ground_truth_files_list.sort()
# dictionary with counter per class
gt_counter_per_class = {}
for txt_file in ground_truth_files_list:
#print(txt_file)
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
# check if there is a correspondent predicted objects file
if not os.path.exists('predicted/' + file_id + ".txt"):
error_msg = "Error. File not found: predicted/" + file_id + ".txt\n"
error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)"
error(error_msg)
lines_list = file_lines_to_list(txt_file)
# create ground-truth dictionary
bounding_boxes = []
is_difficult = False
for line in lines_list:
try:
if "difficult" in line:
class_name, left, top, right, bottom, _difficult = line.split()
is_difficult = True
else:
class_name, left, top, right, bottom = line.split()
except ValueError:
error_msg = "Error: File " + txt_file + " in the wrong format.\n"
error_msg += " Expected: <class_name> <left> <top> <right> <bottom> ['difficult']\n"
error_msg += " Received: " + line
error_msg += "\n\nIf you have a <class_name> with spaces between words you should remove them\n"
error_msg += "by running the script \"remove_space.py\" or \"rename_class.py\" in the \"extra/\" folder."
error(error_msg)
# check if class is in the ignore list, if yes skip
if class_name in args.ignore:
continue
bbox = left + " " + top + " " + right + " " +bottom
if is_difficult:
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
is_difficult = False
else:
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
# count that object
if class_name in gt_counter_per_class:
gt_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
gt_counter_per_class[class_name] = 1
# dump bounding_boxes into a ".json" file
with open(tmp_files_path + "/" + file_id + "_ground_truth.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
gt_classes = list(gt_counter_per_class.keys())
# let's sort the classes alphabetically
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)
#print(gt_classes)
#print(gt_counter_per_class)
"""
Check format of the flag --set-class-iou (if used)
e.g. check if class exists
"""
if specific_iou_flagged:
n_args = len(args.set_class_iou)
error_msg = \
'\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]'
if n_args % 2 != 0:
error('Error, missing arguments. Flag usage:' + error_msg)
# [class_1] [IoU_1] [class_2] [IoU_2]
# specific_iou_classes = ['class_1', 'class_2']
specific_iou_classes = args.set_class_iou[::2] # even
# iou_list = ['IoU_1', 'IoU_2']
iou_list = args.set_class_iou[1::2] # odd
if len(specific_iou_classes) != len(iou_list):
error('Error, missing arguments. Flag usage:' + error_msg)
for tmp_class in specific_iou_classes:
if tmp_class not in gt_classes:
error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg)
for num in iou_list:
if not is_float_between_0_and_1(num):
error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg)
"""
Predicted
Load each of the predicted files into a temporary ".json" file.
"""
# get a list with the predicted files
predicted_files_list = glob.glob('predicted/*.txt')
predicted_files_list.sort()
for class_index, class_name in enumerate(gt_classes):
bounding_boxes = []
for txt_file in predicted_files_list:
#print(txt_file)
# the first time it checks if all the corresponding ground-truth files exist
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
if class_index == 0:
if not os.path.exists('ground-truth/' + file_id + ".txt"):
error_msg = "Error. File not found: ground-truth/" + file_id + ".txt\n"
error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)"
error(error_msg)
lines = file_lines_to_list(txt_file)
for line in lines:
try:
tmp_class_name, confidence, left, top, right, bottom = line.split()
except ValueError:
error_msg = "Error: File " + txt_file + " in the wrong format.\n"
error_msg += " Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n"
error_msg += " Received: " + line
error(error_msg)
if tmp_class_name == class_name:
#print("match")
bbox = left + " " + top + " " + right + " " +bottom
bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
#print(bounding_boxes)
# sort predictions by decreasing confidence
bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
with open(tmp_files_path + "/" + class_name + "_predictions.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
"""
Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
# open file to store the results
with open(results_files_path + "/results.txt", 'w') as results_file:
results_file.write("# AP and precision/recall per class\n")
count_true_positives = {}
for class_index, class_name in enumerate(gt_classes):
count_true_positives[class_name] = 0
"""
Load predictions of that class
"""
predictions_file = tmp_files_path + "/" + class_name + "_predictions.json"
predictions_data = json.load(open(predictions_file))
"""
Assign predictions to ground truth objects
"""
nd = len(predictions_data)
tp = [0] * nd # creates an array of zeros of size nd
fp = [0] * nd
for idx, prediction in enumerate(predictions_data):
file_id = prediction["file_id"]
if show_animation:
# find ground truth image
ground_truth_img = glob.glob1(img_path, file_id + ".*")
#tifCounter = len(glob.glob1(myPath,"*.tif"))
if len(ground_truth_img) == 0:
error("Error. Image not found with id: " + file_id)
elif len(ground_truth_img) > 1:
error("Error. Multiple image with id: " + file_id)
else: # found image
#print(img_path + "/" + ground_truth_img[0])
# Load image
img = cv2.imread(img_path + "/" + ground_truth_img[0])
# load image with draws of multiple detections
img_cumulative_path = results_files_path + "/images/" + ground_truth_img[0]
if os.path.isfile(img_cumulative_path):
img_cumulative = cv2.imread(img_cumulative_path)
else:
img_cumulative = img.copy()
# Add bottom border to image
bottom_border = 60
BLACK = [0, 0, 0]
img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
# assign prediction to ground truth object if any
# open ground-truth with that file_id
gt_file = tmp_files_path + "/" + file_id + "_ground_truth.json"
ground_truth_data = json.load(open(gt_file))
ovmax = -1
gt_match = -1
# load prediction bounding-box
bb = [ float(x) for x in prediction["bbox"].split() ]
for obj in ground_truth_data:
# look for a class_name match
if obj["class_name"] == class_name:
bbgt = [ float(x) for x in obj["bbox"].split() ]
bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap (IoU) = area of intersection / area of union
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
ov = iw * ih / ua
if ov > ovmax:
ovmax = ov
gt_match = obj
# assign prediction as true positive/don't care/false positive
if show_animation:
status = "NO MATCH FOUND!" # status is only used in the animation
# set minimum overlap
min_overlap = MINOVERLAP
if specific_iou_flagged:
if class_name in specific_iou_classes:
index = specific_iou_classes.index(class_name)
min_overlap = float(iou_list[index])
if ovmax >= min_overlap:
if "difficult" not in gt_match:
if not bool(gt_match["used"]):
# true positive
tp[idx] = 1
gt_match["used"] = True
count_true_positives[class_name] += 1
# update the ".json" file
with open(gt_file, 'w') as f:
f.write(json.dumps(ground_truth_data))
if show_animation:
status = "MATCH!"
else:
# false positive (multiple detection)
fp[idx] = 1
if show_animation:
status = "REPEATED MATCH!"
else:
# false positive
fp[idx] = 1
if ovmax > 0:
status = "INSUFFICIENT OVERLAP"
"""
Draw image to show animation
"""
if show_animation:
height, widht = img.shape[:2]
# colors (OpenCV works with BGR)
white = (255,255,255)
light_blue = (255,200,100)
green = (0,255,0)
light_red = (30,30,255)
# 1st line
margin = 10
v_pos = int(height - margin - (bottom_border / 2))
text = "Image: " + ground_truth_img[0] + " "
img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
if ovmax != -1:
color = light_red
if status == "INSUFFICIENT OVERLAP":
text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
else:
text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
color = green
img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
# 2nd line
v_pos += int(bottom_border / 2)
rank_pos = str(idx+1) # rank position (idx starts at 0)
text = "Prediction #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(prediction["confidence"])*100)
img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
color = light_red
if status == "MATCH!":
color = green
text = "Result: " + status + " "
img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
font = cv2.FONT_HERSHEY_SIMPLEX
if ovmax > 0: # if there is intersections between the bounding-boxes
bbgt = [ int(x) for x in gt_match["bbox"].split() ]
cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
bb = [int(i) for i in bb]
cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
# show image
cv2.imshow("Animation", img)
cv2.waitKey(20) # show for 20 ms
# save image to results
output_img_path = results_files_path + "/images/single_predictions/" + class_name + "_prediction" + str(idx) + ".jpg"
cv2.imwrite(output_img_path, img)
# save the image with all the objects drawn to it
cv2.imwrite(img_cumulative_path, img_cumulative)
#print(tp)
# compute precision/recall
cumsum = 0
for idx, val in enumerate(fp):
fp[idx] += cumsum
cumsum += val
cumsum = 0
for idx, val in enumerate(tp):
tp[idx] += cumsum
cumsum += val
#print(tp)
rec = tp[:]
for idx, val in enumerate(tp):
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
#print(rec)
prec = tp[:]
for idx, val in enumerate(tp):
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
#print(prec)
ap, mrec, mprec = voc_ap(rec, prec)
sum_AP += ap
text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)
"""
Write to results.txt
"""
rounded_prec = [ '%.2f' % elem for elem in prec ]
rounded_rec = [ '%.2f' % elem for elem in rec ]
results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
if not args.quiet:
print(text)
ap_dictionary[class_name] = ap
"""
Draw plot
"""
if draw_plot:
plt.plot(rec, prec, '-o')
# add a new penultimate point to the list (mrec[-2], 0.0)
# since the last line segment (and respective area) do not affect the AP value
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
# set window title
fig = plt.gcf() # gcf - get current figure
fig.canvas.set_window_title('AP ' + class_name)
# set plot title
plt.title('class: ' + text)
#plt.suptitle('This is a somewhat long figure title', fontsize=16)
# set axis titles
plt.xlabel('Recall')
plt.ylabel('Precision')
# optional - set axes
axes = plt.gca() # gca - get current axes
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05]) # .05 to give some extra space
# Alternative option -> wait for button to be pressed
#while not plt.waitforbuttonpress(): pass # wait for key display
# Alternative option -> normal display
#plt.show()
# save the plot
fig.savefig(results_files_path + "/classes/" + class_name + ".png")
plt.cla() # clear axes for next plot
if show_animation:
cv2.destroyAllWindows()
results_file.write("\n# mAP of all classes\n")
mAP = sum_AP / n_classes
text = "mAP = {0:.2f}%".format(mAP*100)
results_file.write(text + "\n")
print(text)
# remove the tmp_files directory
shutil.rmtree(tmp_files_path)
"""
Count total of Predictions
"""
# iterate through all the files
pred_counter_per_class = {}
#all_classes_predicted_files = set([])
for txt_file in predicted_files_list:
# get lines to list
lines_list = file_lines_to_list(txt_file)
for line in lines_list:
class_name = line.split()[0]
# check if class is in the ignore list, if yes skip
if class_name in args.ignore:
continue
# count that object
if class_name in pred_counter_per_class:
pred_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
pred_counter_per_class[class_name] = 1
#print(pred_counter_per_class)
pred_classes = list(pred_counter_per_class.keys())
"""
Plot the total number of occurences of each class in the ground-truth
"""
if draw_plot:
window_title = "Ground-Truth Info"
plot_title = "Ground-Truth\n"
plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
x_label = "Number of objects per class"
output_path = results_files_path + "/Ground-Truth Info.png"
to_show = False
plot_color = 'forestgreen'
draw_plot_func(
gt_counter_per_class,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
'',
)
"""
Write number of ground-truth objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
results_file.write("\n# Number of ground-truth objects per class\n")
for class_name in sorted(gt_counter_per_class):
results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")
"""
Finish counting true positives
"""
for class_name in pred_classes:
# if class exists in predictions but not in ground-truth then there are no true positives in that class
if class_name not in gt_classes:
count_true_positives[class_name] = 0
#print(count_true_positives)
"""
Plot the total number of occurences of each class in the "predicted" folder
"""
if draw_plot:
window_title = "Predicted Objects Info"
# Plot title
plot_title = "Predicted Objects\n"
plot_title += "(" + str(len(predicted_files_list)) + " files and "
count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(pred_counter_per_class.values()))
plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
# end Plot title
x_label = "Number of objects per class"
output_path = results_files_path + "/Predicted Objects Info.png"
to_show = False
plot_color = 'forestgreen'
true_p_bar = count_true_positives
draw_plot_func(
pred_counter_per_class,
len(pred_counter_per_class),
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
true_p_bar
)
"""
Write number of predicted objects per class to results.txt
"""
with open(results_files_path + "/results", 'a') as results_file:
results_file.write("\n# Number of predicted objects per class\n")
for class_name in sorted(pred_classes):
n_pred = pred_counter_per_class[class_name]
text = class_name + ": " + str(n_pred)
text += " (tp:" + str(count_true_positives[class_name]) + ""
text += ", fp:" + str(n_pred - count_true_positives[class_name]) + ")\n"
results_file.write(text)
"""
Draw mAP plot (Show AP's of all classes in decreasing order)
"""
if draw_plot:
window_title = "mAP"
plot_title = "mAP = {0:.2f}%".format(mAP*100)
x_label = "Average Precision"
output_path = results_files_path + "/mAP.png"
to_show = True
plot_color = 'royalblue'
draw_plot_func(
ap_dictionary,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
""
)
|