File size: 27,877 Bytes
20e841b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
import glob
import json
import os
import shutil
import operator
import sys
import argparse
from absl import app, flags, logging
from absl.flags import FLAGS

MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge)

parser = argparse.ArgumentParser()
parser.add_argument('-na', '--no-animation',default=True, help="no animation is shown.", action="store_true")
parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true")
parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true")
# argparse receiving list of classes to be ignored
parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.")
parser.add_argument('-o', '--output', default="results", type=str, help="output path name")
# argparse receiving list of classes with specific IoU
parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.")
args = parser.parse_args()

# if there are no classes to ignore then replace None by empty list
if args.ignore is None:
  args.ignore = []

specific_iou_flagged = False
if args.set_class_iou is not None:
  specific_iou_flagged = True

# if there are no images then no animation can be shown
img_path = 'images'
if os.path.exists(img_path): 
  for dirpath, dirnames, files in os.walk(img_path):
    if not files:
      # no image files found
      args.no_animation = True
else:
  args.no_animation = True

# try to import OpenCV if the user didn't choose the option --no-animation
show_animation = False
if not args.no_animation:
  try:
    import cv2
    show_animation = True
  except ImportError:
    print("\"opencv-python\" not found, please install to visualize the results.")
    args.no_animation = True

# try to import Matplotlib if the user didn't choose the option --no-plot
draw_plot = False
if not args.no_plot:
  try:
    import matplotlib.pyplot as plt
    draw_plot = True
  except ImportError:
    print("\"matplotlib\" not found, please install it to get the resulting plots.")
    args.no_plot = True

"""
 throw error and exit
"""
def error(msg):
  print(msg)
  sys.exit(0)

"""
 check if the number is a float between 0.0 and 1.0
"""
def is_float_between_0_and_1(value):
  try:
    val = float(value)
    if val > 0.0 and val < 1.0:
      return True
    else:
      return False
  except ValueError:
    return False

"""
 Calculate the AP given the recall and precision array
  1st) We compute a version of the measured precision/recall curve with
       precision monotonically decreasing
  2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
  """
  --- Official matlab code VOC2012---
  mrec=[0 ; rec ; 1];
  mpre=[0 ; prec ; 0];
  for i=numel(mpre)-1:-1:1
      mpre(i)=max(mpre(i),mpre(i+1));
  end
  i=find(mrec(2:end)~=mrec(1:end-1))+1;
  ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
  """
  rec.insert(0, 0.0) # insert 0.0 at begining of list
  rec.append(1.0) # insert 1.0 at end of list
  mrec = rec[:]
  prec.insert(0, 0.0) # insert 0.0 at begining of list
  prec.append(0.0) # insert 0.0 at end of list
  mpre = prec[:]
  """
   This part makes the precision monotonically decreasing
    (goes from the end to the beginning)
    matlab:  for i=numel(mpre)-1:-1:1
                mpre(i)=max(mpre(i),mpre(i+1));
  """
  # matlab indexes start in 1 but python in 0, so I have to do:
  #   range(start=(len(mpre) - 2), end=0, step=-1)
  # also the python function range excludes the end, resulting in:
  #   range(start=(len(mpre) - 2), end=-1, step=-1)
  for i in range(len(mpre)-2, -1, -1):
    mpre[i] = max(mpre[i], mpre[i+1])
  """
   This part creates a list of indexes where the recall changes
    matlab:  i=find(mrec(2:end)~=mrec(1:end-1))+1;
  """
  i_list = []
  for i in range(1, len(mrec)):
    if mrec[i] != mrec[i-1]:
      i_list.append(i) # if it was matlab would be i + 1
  """
   The Average Precision (AP) is the area under the curve
    (numerical integration)
    matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
  """
  ap = 0.0
  for i in i_list:
    ap += ((mrec[i]-mrec[i-1])*mpre[i])
  return ap, mrec, mpre


"""
 Convert the lines of a file to a list
"""
def file_lines_to_list(path):
  # open txt file lines to a list
  with open(path) as f:
    content = f.readlines()
  # remove whitespace characters like `\n` at the end of each line
  content = [x.strip() for x in content]
  return content

"""
 Draws text in image
"""
def draw_text_in_image(img, text, pos, color, line_width):
  font = cv2.FONT_HERSHEY_PLAIN
  fontScale = 1
  lineType = 1
  bottomLeftCornerOfText = pos
  cv2.putText(img, text,
      bottomLeftCornerOfText,
      font,
      fontScale,
      color,
      lineType)
  text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
  return img, (line_width + text_width)

"""
 Plot - adjust axes
"""
def adjust_axes(r, t, fig, axes):
  # get text width for re-scaling
  bb = t.get_window_extent(renderer=r)
  text_width_inches = bb.width / fig.dpi
  # get axis width in inches
  current_fig_width = fig.get_figwidth()
  new_fig_width = current_fig_width + text_width_inches
  propotion = new_fig_width / current_fig_width
  # get axis limit
  x_lim = axes.get_xlim()
  axes.set_xlim([x_lim[0], x_lim[1]*propotion])

"""
 Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
  # sort the dictionary by decreasing value, into a list of tuples
  sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
  # unpacking the list of tuples into two lists
  sorted_keys, sorted_values = zip(*sorted_dic_by_value)
  # 
  if true_p_bar != "":
    """
     Special case to draw in (green=true predictions) & (red=false predictions)
    """
    fp_sorted = []
    tp_sorted = []
    for key in sorted_keys:
      fp_sorted.append(dictionary[key] - true_p_bar[key])
      tp_sorted.append(true_p_bar[key])
    plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Predictions')
    plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Predictions', left=fp_sorted)
    # add legend
    plt.legend(loc='lower right')
    """
     Write number on side of bar
    """
    fig = plt.gcf() # gcf - get current figure
    axes = plt.gca()
    r = fig.canvas.get_renderer()
    for i, val in enumerate(sorted_values):
      fp_val = fp_sorted[i]
      tp_val = tp_sorted[i]
      fp_str_val = " " + str(fp_val)
      tp_str_val = fp_str_val + " " + str(tp_val)
      # trick to paint multicolor with offset:
      #   first paint everything and then repaint the first number
      t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
      plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
      if i == (len(sorted_values)-1): # largest bar
        adjust_axes(r, t, fig, axes)
  else:
    plt.barh(range(n_classes), sorted_values, color=plot_color)
    """
     Write number on side of bar
    """
    fig = plt.gcf() # gcf - get current figure
    axes = plt.gca()
    r = fig.canvas.get_renderer()
    for i, val in enumerate(sorted_values):
      str_val = " " + str(val) # add a space before
      if val < 1.0:
        str_val = " {0:.2f}".format(val)
      t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
      # re-set axes to show number inside the figure
      if i == (len(sorted_values)-1): # largest bar
        adjust_axes(r, t, fig, axes)
  # set window title
  fig.canvas.set_window_title(window_title)
  # write classes in y axis
  tick_font_size = 12
  plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
  """
   Re-scale height accordingly
  """
  init_height = fig.get_figheight()
  # comput the matrix height in points and inches
  dpi = fig.dpi
  height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
  height_in = height_pt / dpi
  # compute the required figure height 
  top_margin = 0.15    # in percentage of the figure height
  bottom_margin = 0.05 # in percentage of the figure height
  figure_height = height_in / (1 - top_margin - bottom_margin)
  # set new height
  if figure_height > init_height:
    fig.set_figheight(figure_height)

  # set plot title
  plt.title(plot_title, fontsize=14)
  # set axis titles
  # plt.xlabel('classes')
  plt.xlabel(x_label, fontsize='large')
  # adjust size of window
  fig.tight_layout()
  # save the plot
  fig.savefig(output_path)
  # show image
  if to_show:
    plt.show()
  # close the plot
  plt.close()

"""
 Create a "tmp_files/" and "results/" directory
"""
tmp_files_path = "tmp_files"
if not os.path.exists(tmp_files_path): # if it doesn't exist already
  os.makedirs(tmp_files_path)
results_files_path = args.output
if os.path.exists(results_files_path): # if it exist already
  # reset the results directory
  shutil.rmtree(results_files_path)

os.makedirs(results_files_path)
if draw_plot:
  os.makedirs(results_files_path + "/classes")
if show_animation:
  os.makedirs(results_files_path + "/images")
  os.makedirs(results_files_path + "/images/single_predictions")

"""
 Ground-Truth
   Load each of the ground-truth files into a temporary ".json" file.
   Create a list of all the class names present in the ground-truth (gt_classes).
"""
# get a list with the ground-truth files
ground_truth_files_list = glob.glob('ground-truth/*.txt')
if len(ground_truth_files_list) == 0:
  error("Error: No ground-truth files found!")
ground_truth_files_list.sort()
# dictionary with counter per class
gt_counter_per_class = {}

for txt_file in ground_truth_files_list:
  #print(txt_file)
  file_id = txt_file.split(".txt",1)[0]
  file_id = os.path.basename(os.path.normpath(file_id))
  # check if there is a correspondent predicted objects file
  if not os.path.exists('predicted/' + file_id + ".txt"):
    error_msg = "Error. File not found: predicted/" +  file_id + ".txt\n"
    error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)"
    error(error_msg)
  lines_list = file_lines_to_list(txt_file)
  # create ground-truth dictionary
  bounding_boxes = []
  is_difficult = False
  for line in lines_list:
    try:
      if "difficult" in line:
          class_name, left, top, right, bottom, _difficult = line.split()
          is_difficult = True
      else:
          class_name, left, top, right, bottom = line.split()
    except ValueError:
      error_msg = "Error: File " + txt_file + " in the wrong format.\n"
      error_msg += " Expected: <class_name> <left> <top> <right> <bottom> ['difficult']\n"
      error_msg += " Received: " + line
      error_msg += "\n\nIf you have a <class_name> with spaces between words you should remove them\n"
      error_msg += "by running the script \"remove_space.py\" or \"rename_class.py\" in the \"extra/\" folder."
      error(error_msg)
    # check if class is in the ignore list, if yes skip
    if class_name in args.ignore:
      continue
    bbox = left + " " + top + " " + right + " " +bottom
    if is_difficult:
        bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
        is_difficult = False
    else:
        bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
        # count that object
        if class_name in gt_counter_per_class:
          gt_counter_per_class[class_name] += 1
        else:
          # if class didn't exist yet
          gt_counter_per_class[class_name] = 1
  # dump bounding_boxes into a ".json" file
  with open(tmp_files_path + "/" + file_id + "_ground_truth.json", 'w') as outfile:
    json.dump(bounding_boxes, outfile)

gt_classes = list(gt_counter_per_class.keys())
# let's sort the classes alphabetically
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)
#print(gt_classes)
#print(gt_counter_per_class)

"""
 Check format of the flag --set-class-iou (if used)
  e.g. check if class exists
"""
if specific_iou_flagged:
  n_args = len(args.set_class_iou)
  error_msg = \
    '\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]'
  if n_args % 2 != 0:
    error('Error, missing arguments. Flag usage:' + error_msg)
  # [class_1] [IoU_1] [class_2] [IoU_2]
  # specific_iou_classes = ['class_1', 'class_2']
  specific_iou_classes = args.set_class_iou[::2] # even
  # iou_list = ['IoU_1', 'IoU_2']
  iou_list = args.set_class_iou[1::2] # odd
  if len(specific_iou_classes) != len(iou_list):
    error('Error, missing arguments. Flag usage:' + error_msg)
  for tmp_class in specific_iou_classes:
    if tmp_class not in gt_classes:
          error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg)
  for num in iou_list:
    if not is_float_between_0_and_1(num):
      error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg)

"""
 Predicted
   Load each of the predicted files into a temporary ".json" file.
"""
# get a list with the predicted files
predicted_files_list = glob.glob('predicted/*.txt')
predicted_files_list.sort()

for class_index, class_name in enumerate(gt_classes):
  bounding_boxes = []
  for txt_file in predicted_files_list:
    #print(txt_file)
    # the first time it checks if all the corresponding ground-truth files exist
    file_id = txt_file.split(".txt",1)[0]
    file_id = os.path.basename(os.path.normpath(file_id))
    if class_index == 0:
      if not os.path.exists('ground-truth/' + file_id + ".txt"):
        error_msg = "Error. File not found: ground-truth/" +  file_id + ".txt\n"
        error_msg += "(You can avoid this error message by running extra/intersect-gt-and-pred.py)"
        error(error_msg)
    lines = file_lines_to_list(txt_file)
    for line in lines:
      try:
        tmp_class_name, confidence, left, top, right, bottom = line.split()
      except ValueError:
        error_msg = "Error: File " + txt_file + " in the wrong format.\n"
        error_msg += " Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n"
        error_msg += " Received: " + line
        error(error_msg)
      if tmp_class_name == class_name:
        #print("match")
        bbox = left + " " + top + " " + right + " " +bottom
        bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
        #print(bounding_boxes)
  # sort predictions by decreasing confidence
  bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
  with open(tmp_files_path + "/" + class_name + "_predictions.json", 'w') as outfile:
    json.dump(bounding_boxes, outfile)

"""
 Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
# open file to store the results
with open(results_files_path + "/results.txt", 'w') as results_file:
  results_file.write("# AP and precision/recall per class\n")
  count_true_positives = {}
  for class_index, class_name in enumerate(gt_classes):
    count_true_positives[class_name] = 0
    """
     Load predictions of that class
    """
    predictions_file = tmp_files_path + "/" + class_name + "_predictions.json"
    predictions_data = json.load(open(predictions_file))

    """
     Assign predictions to ground truth objects
    """
    nd = len(predictions_data)
    tp = [0] * nd # creates an array of zeros of size nd
    fp = [0] * nd
    for idx, prediction in enumerate(predictions_data):
      file_id = prediction["file_id"]
      if show_animation:
        # find ground truth image
        ground_truth_img = glob.glob1(img_path, file_id + ".*")
        #tifCounter = len(glob.glob1(myPath,"*.tif"))
        if len(ground_truth_img) == 0:
          error("Error. Image not found with id: " + file_id)
        elif len(ground_truth_img) > 1:
          error("Error. Multiple image with id: " + file_id)
        else: # found image
          #print(img_path + "/" + ground_truth_img[0])
          # Load image
          img = cv2.imread(img_path + "/" + ground_truth_img[0])
          # load image with draws of multiple detections
          img_cumulative_path = results_files_path + "/images/" + ground_truth_img[0]
          if os.path.isfile(img_cumulative_path):
            img_cumulative = cv2.imread(img_cumulative_path)
          else:
            img_cumulative = img.copy()
          # Add bottom border to image
          bottom_border = 60
          BLACK = [0, 0, 0]
          img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
      # assign prediction to ground truth object if any
      #   open ground-truth with that file_id
      gt_file = tmp_files_path + "/" + file_id + "_ground_truth.json"
      ground_truth_data = json.load(open(gt_file))
      ovmax = -1
      gt_match = -1
      # load prediction bounding-box
      bb = [ float(x) for x in prediction["bbox"].split() ]
      for obj in ground_truth_data:
        # look for a class_name match
        if obj["class_name"] == class_name:
          bbgt = [ float(x) for x in obj["bbox"].split() ]
          bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
          iw = bi[2] - bi[0] + 1
          ih = bi[3] - bi[1] + 1
          if iw > 0 and ih > 0:
            # compute overlap (IoU) = area of intersection / area of union
            ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
                    + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
            ov = iw * ih / ua
            if ov > ovmax:
              ovmax = ov
              gt_match = obj

      # assign prediction as true positive/don't care/false positive
      if show_animation:
        status = "NO MATCH FOUND!" # status is only used in the animation
      # set minimum overlap
      min_overlap = MINOVERLAP
      if specific_iou_flagged:
        if class_name in specific_iou_classes:
          index = specific_iou_classes.index(class_name)
          min_overlap = float(iou_list[index])
      if ovmax >= min_overlap:
        if "difficult" not in gt_match:
            if not bool(gt_match["used"]):
              # true positive
              tp[idx] = 1
              gt_match["used"] = True
              count_true_positives[class_name] += 1
              # update the ".json" file
              with open(gt_file, 'w') as f:
                  f.write(json.dumps(ground_truth_data))
              if show_animation:
                status = "MATCH!"
            else:
              # false positive (multiple detection)
              fp[idx] = 1
              if show_animation:
                status = "REPEATED MATCH!"
      else:
        # false positive
        fp[idx] = 1
        if ovmax > 0:
          status = "INSUFFICIENT OVERLAP"

      """
       Draw image to show animation
      """
      if show_animation:
        height, widht = img.shape[:2]
        # colors (OpenCV works with BGR)
        white = (255,255,255)
        light_blue = (255,200,100)
        green = (0,255,0)
        light_red = (30,30,255)
        # 1st line
        margin = 10
        v_pos = int(height - margin - (bottom_border / 2))
        text = "Image: " + ground_truth_img[0] + " "
        img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
        text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
        img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
        if ovmax != -1:
          color = light_red
          if status == "INSUFFICIENT OVERLAP":
            text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
          else:
            text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
            color = green
          img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
        # 2nd line
        v_pos += int(bottom_border / 2)
        rank_pos = str(idx+1) # rank position (idx starts at 0)
        text = "Prediction #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(prediction["confidence"])*100)
        img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
        color = light_red
        if status == "MATCH!":
          color = green
        text = "Result: " + status + " "
        img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)

        font = cv2.FONT_HERSHEY_SIMPLEX
        if ovmax > 0: # if there is intersections between the bounding-boxes
          bbgt = [ int(x) for x in gt_match["bbox"].split() ]
          cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
          cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
          cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
        bb = [int(i) for i in bb]
        cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
        cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
        cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
        # show image
        cv2.imshow("Animation", img)
        cv2.waitKey(20) # show for 20 ms
        # save image to results
        output_img_path = results_files_path + "/images/single_predictions/" + class_name + "_prediction" + str(idx) + ".jpg"
        cv2.imwrite(output_img_path, img)
        # save the image with all the objects drawn to it
        cv2.imwrite(img_cumulative_path, img_cumulative)

    #print(tp)
    # compute precision/recall
    cumsum = 0
    for idx, val in enumerate(fp):
      fp[idx] += cumsum
      cumsum += val
    cumsum = 0
    for idx, val in enumerate(tp):
      tp[idx] += cumsum
      cumsum += val
    #print(tp)
    rec = tp[:]
    for idx, val in enumerate(tp):
      rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
    #print(rec)
    prec = tp[:]
    for idx, val in enumerate(tp):
      prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
    #print(prec)

    ap, mrec, mprec = voc_ap(rec, prec)
    sum_AP += ap
    text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP  " #class_name + " AP = {0:.2f}%".format(ap*100)
    """
     Write to results.txt
    """
    rounded_prec = [ '%.2f' % elem for elem in prec ]
    rounded_rec = [ '%.2f' % elem for elem in rec ]
    results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall   :" + str(rounded_rec) + "\n\n")
    if not args.quiet:
      print(text)
    ap_dictionary[class_name] = ap

    """
     Draw plot
    """
    if draw_plot:
      plt.plot(rec, prec, '-o')
      # add a new penultimate point to the list (mrec[-2], 0.0)
      # since the last line segment (and respective area) do not affect the AP value
      area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
      area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
      plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
      # set window title
      fig = plt.gcf() # gcf - get current figure
      fig.canvas.set_window_title('AP ' + class_name)
      # set plot title
      plt.title('class: ' + text)
      #plt.suptitle('This is a somewhat long figure title', fontsize=16)
      # set axis titles
      plt.xlabel('Recall')
      plt.ylabel('Precision')
      # optional - set axes
      axes = plt.gca() # gca - get current axes
      axes.set_xlim([0.0,1.0])
      axes.set_ylim([0.0,1.05]) # .05 to give some extra space
      # Alternative option -> wait for button to be pressed
      #while not plt.waitforbuttonpress(): pass # wait for key display
      # Alternative option -> normal display
      #plt.show()
      # save the plot
      fig.savefig(results_files_path + "/classes/" + class_name + ".png")
      plt.cla() # clear axes for next plot

  if show_animation:
    cv2.destroyAllWindows()

  results_file.write("\n# mAP of all classes\n")
  mAP = sum_AP / n_classes
  text = "mAP = {0:.2f}%".format(mAP*100)
  results_file.write(text + "\n")
  print(text)

# remove the tmp_files directory
shutil.rmtree(tmp_files_path)

"""
 Count total of Predictions
"""
# iterate through all the files
pred_counter_per_class = {}
#all_classes_predicted_files = set([])
for txt_file in predicted_files_list:
  # get lines to list
  lines_list = file_lines_to_list(txt_file)
  for line in lines_list:
    class_name = line.split()[0]
    # check if class is in the ignore list, if yes skip
    if class_name in args.ignore:
      continue
    # count that object
    if class_name in pred_counter_per_class:
      pred_counter_per_class[class_name] += 1
    else:
      # if class didn't exist yet
      pred_counter_per_class[class_name] = 1
#print(pred_counter_per_class)
pred_classes = list(pred_counter_per_class.keys())


"""
 Plot the total number of occurences of each class in the ground-truth
"""
if draw_plot:
  window_title = "Ground-Truth Info"
  plot_title = "Ground-Truth\n"
  plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
  x_label = "Number of objects per class"
  output_path = results_files_path + "/Ground-Truth Info.png"
  to_show = False
  plot_color = 'forestgreen'
  draw_plot_func(
    gt_counter_per_class,
    n_classes,
    window_title,
    plot_title,
    x_label,
    output_path,
    to_show,
    plot_color,
    '',
    )

"""
 Write number of ground-truth objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
  results_file.write("\n# Number of ground-truth objects per class\n")
  for class_name in sorted(gt_counter_per_class):
    results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")

"""
 Finish counting true positives
"""
for class_name in pred_classes:
  # if class exists in predictions but not in ground-truth then there are no true positives in that class
  if class_name not in gt_classes:
    count_true_positives[class_name] = 0
#print(count_true_positives)

"""
 Plot the total number of occurences of each class in the "predicted" folder
"""
if draw_plot:
  window_title = "Predicted Objects Info"
  # Plot title
  plot_title = "Predicted Objects\n"
  plot_title += "(" + str(len(predicted_files_list)) + " files and "
  count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(pred_counter_per_class.values()))
  plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
  # end Plot title
  x_label = "Number of objects per class"
  output_path = results_files_path + "/Predicted Objects Info.png"
  to_show = False
  plot_color = 'forestgreen'
  true_p_bar = count_true_positives
  draw_plot_func(
    pred_counter_per_class,
    len(pred_counter_per_class),
    window_title,
    plot_title,
    x_label,
    output_path,
    to_show,
    plot_color,
    true_p_bar
    )

"""
 Write number of predicted objects per class to results.txt
"""
with open(results_files_path + "/results", 'a') as results_file:
  results_file.write("\n# Number of predicted objects per class\n")
  for class_name in sorted(pred_classes):
    n_pred = pred_counter_per_class[class_name]
    text = class_name + ": " + str(n_pred)
    text += " (tp:" + str(count_true_positives[class_name]) + ""
    text += ", fp:" + str(n_pred - count_true_positives[class_name]) + ")\n"
    results_file.write(text)

"""
 Draw mAP plot (Show AP's of all classes in decreasing order)
"""
if draw_plot:
  window_title = "mAP"
  plot_title = "mAP = {0:.2f}%".format(mAP*100)
  x_label = "Average Precision"
  output_path = results_files_path + "/mAP.png"
  to_show = True
  plot_color = 'royalblue'
  draw_plot_func(
    ap_dictionary,
    n_classes,
    window_title,
    plot_title,
    x_label,
    output_path,
    to_show,
    plot_color,
    ""
    )