layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3809
  • Precision: 0.8837
  • Recall: 0.8982
  • F1: 0.8909
  • Accuracy: 0.9058

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.3125 250 1.4179 0.5786 0.6751 0.6231 0.7037
1.8601 0.625 500 0.9021 0.7458 0.8016 0.7727 0.7988
1.8601 0.9375 750 0.6900 0.8096 0.8338 0.8215 0.8294
0.7675 1.25 1000 0.5915 0.8128 0.8481 0.8300 0.8544
0.7675 1.5625 1250 0.5041 0.8381 0.8638 0.8507 0.8722
0.4979 1.875 1500 0.4669 0.8413 0.8728 0.8567 0.8850
0.4979 2.1875 1750 0.4080 0.8628 0.8847 0.8736 0.8990
0.384 2.5 2000 0.3878 0.8731 0.8907 0.8818 0.9003
0.384 2.8125 2250 0.3880 0.8794 0.8952 0.8872 0.9032
0.3439 3.125 2500 0.3809 0.8837 0.8982 0.8909 0.9058

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
16
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Salz900/layoutlmv3-finetuned-cord_100

Finetuned
(218)
this model

Evaluation results