LLaMaCoder

Model Description

LLaMaCoder is based on LLaMa2 7B language model, finetuned using LoRA adaptors.

Usage

Generate code with LLaMaCoder in 4bit model according to the following python snippet:

from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
import torch

MODEL_NAME = "Sakuna/LLaMaCoderAll"
device = "cuda:0"


bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    quantization_config=bnb_config,
    trust_remote_code=True
)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

model = model.to(device)
model.eval()

prompt = "Write a Java program to calculate the factorial of a given number k"
input = f"{prompt}\n### Solution:\n"
device = "cuda:0"

inputs = tokenizer(input, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=256, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Sakuna/LLaMaCoderAll