Whisper Large v3 Turbo Sr Test

This model is in test phase DO NOT USE IT ... YET

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Yodas dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1195
  • Wer: 0.1378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6455 0.2439 500 0.1869 0.1928
0.5858 0.4878 1000 0.1694 0.1870
0.5608 0.7317 1500 0.1507 0.1641
0.4547 0.9756 2000 0.1388 0.1542
0.3905 1.2195 2500 0.1341 0.1461
0.3857 1.4634 3000 0.1291 0.1450
0.3656 1.7073 3500 0.1243 0.1415
0.3369 1.9512 4000 0.1195 0.1378

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.20.3
Downloads last month
22
Safetensors
Model size
809M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sagicc/whisper-large-v3-turbo-sr-v2

Finetuned
(91)
this model

Dataset used to train Sagicc/whisper-large-v3-turbo-sr-v2

Evaluation results