YAML Metadata Error: "datasets[0]" with value "dcep europarl jrc-acquis" is not valid. If possible, use a dataset id from https://hf.co/datasets.
YAML Metadata Error: "language" must only contain lowercase characters
YAML Metadata Error: "language" with value "French Cszech" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

legal_t5_small_multitask_fr_cs model

Model on translating legal text from French to Cszech. It was first released in this repository. The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model.

Model description

No pretraining is involved in case of legal_t5_small_multitask_fr_cs model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario.

Intended uses & limitations

The model could be used for translation of legal texts from French to Cszech.

How to use

Here is how to use this model to translate legal text from French to Cszech in PyTorch:

from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline

pipeline = TranslationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_fr_cs"),
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_fr_cs", do_lower_case=False, 
                                            skip_special_tokens=True),
    device=0
)

fr_text = "BUDG – Décision: aucun avis"

pipeline([fr_text], max_length=512)

Training data

The legal_t5_small_multitask_fr_cs model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on JRC-ACQUIS, EUROPARL, and DCEP dataset consisting of 5 Million parallel texts.

Training procedure

The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule.

Preprocessing

An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.

Pretraining

Evaluation results

When the model is used for translation test dataset, achieves the following results:

Test results :

Model BLEU score
legal_t5_small_multitask_fr_cs 44.499

BibTeX entry and citation info

Created by Ahmed Elnaggar/@Elnaggar_AI | LinkedIn

Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.