pythia-70m_tatsu-lab_alpaca_farm_sftsd1_policy_pythia-6.9b_gold_internlm2-7b_noise0.25_rmsd1
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7827
- Accuracy: 0.5305
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 1.0719 | 0.5085 |
1.1256 | 0.0648 | 100 | 1.0495 | 0.5116 |
1.1008 | 0.1296 | 200 | 0.9802 | 0.5170 |
1.014 | 0.1944 | 300 | 0.9320 | 0.5089 |
1.0421 | 0.2592 | 400 | 0.8897 | 0.5077 |
0.8738 | 0.3239 | 500 | 0.8602 | 0.5309 |
0.8959 | 0.3887 | 600 | 0.8550 | 0.5154 |
0.8965 | 0.4535 | 700 | 0.8285 | 0.5201 |
0.8654 | 0.5183 | 800 | 0.8241 | 0.5274 |
0.8095 | 0.5831 | 900 | 0.8167 | 0.5359 |
0.806 | 0.6479 | 1000 | 0.8225 | 0.5228 |
0.8808 | 0.7127 | 1100 | 0.8161 | 0.5278 |
0.7985 | 0.7775 | 1200 | 0.8107 | 0.5224 |
0.7993 | 0.8422 | 1300 | 0.8108 | 0.5278 |
0.8005 | 0.9070 | 1400 | 0.8097 | 0.5224 |
0.7673 | 0.9718 | 1500 | 0.7999 | 0.5305 |
0.8418 | 1.0366 | 1600 | 0.7983 | 0.5293 |
0.797 | 1.1014 | 1700 | 0.7949 | 0.5262 |
0.8148 | 1.1662 | 1800 | 0.7987 | 0.5266 |
0.8168 | 1.2310 | 1900 | 0.7983 | 0.5266 |
0.821 | 1.2958 | 2000 | 0.7883 | 0.5328 |
0.845 | 1.3605 | 2100 | 0.7879 | 0.5409 |
0.7965 | 1.4253 | 2200 | 0.7883 | 0.5374 |
0.8251 | 1.4901 | 2300 | 0.7927 | 0.5228 |
0.8373 | 1.5549 | 2400 | 0.7910 | 0.5282 |
0.8183 | 1.6197 | 2500 | 0.7918 | 0.5166 |
0.7966 | 1.6845 | 2600 | 0.7902 | 0.5336 |
0.8038 | 1.7493 | 2700 | 0.7929 | 0.5262 |
0.8279 | 1.8141 | 2800 | 0.7906 | 0.5266 |
0.8854 | 1.8788 | 2900 | 0.7904 | 0.5243 |
0.7901 | 1.9436 | 3000 | 0.7888 | 0.5312 |
0.8259 | 2.0084 | 3100 | 0.7837 | 0.5243 |
0.8197 | 2.0732 | 3200 | 0.7857 | 0.5316 |
0.8428 | 2.1380 | 3300 | 0.7867 | 0.5309 |
0.7408 | 2.2028 | 3400 | 0.7916 | 0.5282 |
0.8219 | 2.2676 | 3500 | 0.7891 | 0.5355 |
0.8385 | 2.3324 | 3600 | 0.7822 | 0.5262 |
0.7687 | 2.3971 | 3700 | 0.7854 | 0.5247 |
0.8747 | 2.4619 | 3800 | 0.7854 | 0.5340 |
0.7911 | 2.5267 | 3900 | 0.7847 | 0.5297 |
0.8298 | 2.5915 | 4000 | 0.7853 | 0.5243 |
0.8876 | 2.6563 | 4100 | 0.7865 | 0.5266 |
0.8393 | 2.7211 | 4200 | 0.7820 | 0.5359 |
0.7034 | 2.7859 | 4300 | 0.7823 | 0.5355 |
0.8332 | 2.8507 | 4400 | 0.7866 | 0.5258 |
0.8242 | 2.9155 | 4500 | 0.7838 | 0.5305 |
0.8284 | 2.9802 | 4600 | 0.7915 | 0.5197 |
0.8051 | 3.0450 | 4700 | 0.7875 | 0.5255 |
0.7883 | 3.1098 | 4800 | 0.7860 | 0.5328 |
0.8132 | 3.1746 | 4900 | 0.7828 | 0.5208 |
0.8228 | 3.2394 | 5000 | 0.7795 | 0.5320 |
0.8251 | 3.3042 | 5100 | 0.7822 | 0.5347 |
0.8175 | 3.3690 | 5200 | 0.7877 | 0.5212 |
0.8343 | 3.4338 | 5300 | 0.7811 | 0.5266 |
0.8314 | 3.4985 | 5400 | 0.7847 | 0.5309 |
0.7963 | 3.5633 | 5500 | 0.7839 | 0.5274 |
0.7869 | 3.6281 | 5600 | 0.7839 | 0.5243 |
0.8889 | 3.6929 | 5700 | 0.7877 | 0.5143 |
0.7897 | 3.7577 | 5800 | 0.7864 | 0.5309 |
0.7761 | 3.8225 | 5900 | 0.7886 | 0.5247 |
0.8002 | 3.8873 | 6000 | 0.7810 | 0.5305 |
0.8301 | 3.9521 | 6100 | 0.7838 | 0.5285 |
0.8421 | 4.0168 | 6200 | 0.7857 | 0.5289 |
0.7951 | 4.0816 | 6300 | 0.7846 | 0.5332 |
0.8082 | 4.1464 | 6400 | 0.7863 | 0.5170 |
0.8292 | 4.2112 | 6500 | 0.7855 | 0.5324 |
0.8205 | 4.2760 | 6600 | 0.7857 | 0.5320 |
0.7927 | 4.3408 | 6700 | 0.7833 | 0.5231 |
0.8571 | 4.4056 | 6800 | 0.7925 | 0.5204 |
0.7917 | 4.4704 | 6900 | 0.7825 | 0.5258 |
0.8269 | 4.5351 | 7000 | 0.7882 | 0.5228 |
0.8077 | 4.5999 | 7100 | 0.7881 | 0.5258 |
0.7534 | 4.6647 | 7200 | 0.7841 | 0.5243 |
0.7527 | 4.7295 | 7300 | 0.7878 | 0.5185 |
0.8028 | 4.7943 | 7400 | 0.7820 | 0.5328 |
0.8091 | 4.8591 | 7500 | 0.7852 | 0.5262 |
0.8214 | 4.9239 | 7600 | 0.7857 | 0.5266 |
0.818 | 4.9887 | 7700 | 0.7844 | 0.5285 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.