YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
llama-2-7b - GGUF
- Model creator: https://huggingface.co/unsloth/
- Original model: https://huggingface.co/unsloth/llama-2-7b/
Name | Quant method | Size |
---|---|---|
llama-2-7b.Q2_K.gguf | Q2_K | 2.36GB |
llama-2-7b.IQ3_XS.gguf | IQ3_XS | 2.6GB |
llama-2-7b.IQ3_S.gguf | IQ3_S | 2.75GB |
llama-2-7b.Q3_K_S.gguf | Q3_K_S | 2.75GB |
llama-2-7b.IQ3_M.gguf | IQ3_M | 2.9GB |
llama-2-7b.Q3_K.gguf | Q3_K | 3.07GB |
llama-2-7b.Q3_K_M.gguf | Q3_K_M | 3.07GB |
llama-2-7b.Q3_K_L.gguf | Q3_K_L | 3.35GB |
llama-2-7b.IQ4_XS.gguf | IQ4_XS | 3.4GB |
llama-2-7b.Q4_0.gguf | Q4_0 | 3.56GB |
llama-2-7b.IQ4_NL.gguf | IQ4_NL | 3.58GB |
llama-2-7b.Q4_K_S.gguf | Q4_K_S | 3.59GB |
llama-2-7b.Q4_K.gguf | Q4_K | 3.8GB |
llama-2-7b.Q4_K_M.gguf | Q4_K_M | 3.8GB |
llama-2-7b.Q4_1.gguf | Q4_1 | 3.95GB |
llama-2-7b.Q5_0.gguf | Q5_0 | 4.33GB |
llama-2-7b.Q5_K_S.gguf | Q5_K_S | 4.33GB |
llama-2-7b.Q5_K.gguf | Q5_K | 4.45GB |
llama-2-7b.Q5_K_M.gguf | Q5_K_M | 4.45GB |
llama-2-7b.Q5_1.gguf | Q5_1 | 4.72GB |
llama-2-7b.Q6_K.gguf | Q6_K | 5.15GB |
llama-2-7b.Q8_0.gguf | Q8_0 | 6.67GB |
Original model description:
language:
- en license: apache-2.0 library_name: transformers tags:
- unsloth
- transformers
- llama
- llama-2
Finetune Mistral, Gemma, Llama 2-5x faster with 70% less memory via Unsloth!
Directly quantized 4bit model with bitsandbytes
.
We have a Google Colab Tesla T4 notebook for Llama 7b here: https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing
✨ Finetune for Free
All notebooks are beginner friendly! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
Unsloth supports | Free Notebooks | Performance | Memory use |
---|---|---|---|
Gemma 7b | ▶️ Start on Colab | 2.4x faster | 58% less |
Mistral 7b | ▶️ Start on Colab | 2.2x faster | 62% less |
Llama-2 7b | ▶️ Start on Colab | 2.2x faster | 43% less |
TinyLlama | ▶️ Start on Colab | 3.9x faster | 74% less |
CodeLlama 34b A100 | ▶️ Start on Colab | 1.9x faster | 27% less |
Mistral 7b 1xT4 | ▶️ Start on Kaggle | 5x faster* | 62% less |
DPO - Zephyr | ▶️ Start on Colab | 1.9x faster | 19% less |
- This conversational notebook is useful for ShareGPT ChatML / Vicuna templates.
- This text completion notebook is for raw text. This DPO notebook replicates Zephyr.
- * Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
- Downloads last month
- 212