YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval - GGUF
- Model creator: https://huggingface.co/sinjy1203/
- Original model: https://huggingface.co/sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval/
Original model description:
language: - ko license: apache-2.0 library_name: transformers tags: - text-generation-inference metrics: - accuracy - f1 - precision - recall pipeline_tag: text-classification
EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval
About the Model
This model has been fine-tuned to evaluate whether the retrieved context for a question in RAG is correct with a yes or no answer.
The base model for this model is yanolja/EEVE-Korean-Instruct-10.8B-v1.0.
Prompt Template
์ฃผ์ด์ง ์ง๋ฌธ๊ณผ ์ ๋ณด๊ฐ ์ฃผ์ด์ก์ ๋ ์ง๋ฌธ์ ๋ตํ๊ธฐ์ ์ถฉ๋ถํ ์ ๋ณด์ธ์ง ํ๊ฐํด์ค.
์ ๋ณด๊ฐ ์ถฉ๋ถํ์ง๋ฅผ ํ๊ฐํ๊ธฐ ์ํด "์" ๋๋ "์๋์ค"๋ก ๋ตํด์ค.
### ์ง๋ฌธ:
{question}
### ์ ๋ณด:
{context}
### ํ๊ฐ:
How to Use it
import torch
from transformers import (
BitsAndBytesConfig,
AutoModelForCausalLM,
AutoTokenizer,
)
model_path = "sinjy1203/EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval"
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, quantization_config=nf4_config, device_map={'': 'cuda:0'}
)
prompt_template = '์ฃผ์ด์ง ์ง๋ฌธ๊ณผ ์ ๋ณด๊ฐ ์ฃผ์ด์ก์ ๋ ์ง๋ฌธ์ ๋ตํ๊ธฐ์ ์ถฉ๋ถํ ์ ๋ณด์ธ์ง ํ๊ฐํด์ค.\n์ ๋ณด๊ฐ ์ถฉ๋ถํ์ง๋ฅผ ํ๊ฐํ๊ธฐ ์ํด "์" ๋๋ "์๋์ค"๋ก ๋ตํด์ค.\n\n### ์ง๋ฌธ:\n{question}\n\n### ์ ๋ณด:\n{context}\n\n### ํ๊ฐ:\n'
query = {
"question": "๋์๋ฆฌ ์ข
๊ฐ์ดํ๊ฐ ์ธ์ ์ธ๊ฐ์?",
"context": "์ข
๊ฐ์ดํ ๋ ์ง๋ 6์ 21์ผ์
๋๋ค."
}
model_inputs = tokenizer(prompt_template.format_map(query), return_tensors='pt')
output = model.generate(**model_inputs, max_new_tokens=100, max_length=200)
print(output)
Example Output
์ฃผ์ด์ง ์ง๋ฌธ๊ณผ ์ ๋ณด๊ฐ ์ฃผ์ด์ก์ ๋ ์ง๋ฌธ์ ๋ตํ๊ธฐ์ ์ถฉ๋ถํ ์ ๋ณด์ธ์ง ํ๊ฐํด์ค.
์ ๋ณด๊ฐ ์ถฉ๋ถํ์ง๋ฅผ ํ๊ฐํ๊ธฐ ์ํด "์" ๋๋ "์๋์ค"๋ก ๋ตํด์ค.
### ์ง๋ฌธ:
๋์๋ฆฌ ์ข
๊ฐ์ดํ๊ฐ ์ธ์ ์ธ๊ฐ์?
### ์ ๋ณด:
์ข
๊ฐ์ดํ ๋ ์ง๋ 6์ 21์ผ์
๋๋ค.
### ํ๊ฐ:
์<|end_of_text|>
Training Data
- Referenced generated_instruction by stanford_alpaca
- use yanolja/EEVE-Korean-Instruct-10.8B-v1.0 as the model for question generation.
Metrics
Korean LLM Benchmark
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
EEVE-Korean-Instruct-10.8B-v1.0 | 56.08 | 55.2 | 66.11 | 56.48 | 49.14 | 53.48 |
EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval | 56.1 | 55.55 | 65.95 | 56.24 | 48.66 | 54.07 |
Generated Dataset
Model | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|
EEVE-Korean-Instruct-10.8B-v1.0 | 0.824 | 0.800 | 0.885 | 0.697 |
EEVE-Korean-Instruct-10.8B-v1.0-Grade-Retrieval | 0.892 | 0.875 | 0.903 | 0.848 |
- Downloads last month
- 31