YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
GetCode-slerp - GGUF
- Model creator: https://huggingface.co/mavihsrr/
- Original model: https://huggingface.co/mavihsrr/GetCode-slerp/
Name | Quant method | Size |
---|---|---|
GetCode-slerp.Q2_K.gguf | Q2_K | 2.36GB |
GetCode-slerp.IQ3_XS.gguf | IQ3_XS | 2.6GB |
GetCode-slerp.IQ3_S.gguf | IQ3_S | 2.75GB |
GetCode-slerp.Q3_K_S.gguf | Q3_K_S | 2.75GB |
GetCode-slerp.IQ3_M.gguf | IQ3_M | 2.9GB |
GetCode-slerp.Q3_K.gguf | Q3_K | 3.07GB |
GetCode-slerp.Q3_K_M.gguf | Q3_K_M | 3.07GB |
GetCode-slerp.Q3_K_L.gguf | Q3_K_L | 3.35GB |
GetCode-slerp.IQ4_XS.gguf | IQ4_XS | 3.4GB |
GetCode-slerp.Q4_0.gguf | Q4_0 | 3.56GB |
GetCode-slerp.IQ4_NL.gguf | IQ4_NL | 3.58GB |
GetCode-slerp.Q4_K_S.gguf | Q4_K_S | 3.59GB |
GetCode-slerp.Q4_K.gguf | Q4_K | 3.8GB |
GetCode-slerp.Q4_K_M.gguf | Q4_K_M | 3.8GB |
GetCode-slerp.Q4_1.gguf | Q4_1 | 3.95GB |
GetCode-slerp.Q5_0.gguf | Q5_0 | 4.33GB |
GetCode-slerp.Q5_K_S.gguf | Q5_K_S | 4.33GB |
GetCode-slerp.Q5_K.gguf | Q5_K | 4.45GB |
GetCode-slerp.Q5_K_M.gguf | Q5_K_M | 4.45GB |
GetCode-slerp.Q5_1.gguf | Q5_1 | 4.72GB |
GetCode-slerp.Q6_K.gguf | Q6_K | 5.15GB |
GetCode-slerp.Q8_0.gguf | Q8_0 | 6.67GB |
Original model description:
license: apache-2.0 tags: - merge - mergekit - lazymergekit - codellama/CodeLlama-7b-Instruct-hf - Salesforce/codegen25-7b-multi
GetCode-slerp
GetCode-slerp is a merge of the following models using LazyMergekit:
𧩠Configuration
slices:
- sources:
- model: codellama/CodeLlama-7b-Instruct-hf
layer_range: [0, 32]
- model: Salesforce/codegen25-7b-multi
layer_range: [0, 32]
merge_method: slerp
base_model: codellama/CodeLlama-7b-Instruct-hf
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mavihsrr/GetCode-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 117