YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
piccolo-math-2x7b - GGUF
- Model creator: https://huggingface.co/macadeliccc/
- Original model: https://huggingface.co/macadeliccc/piccolo-math-2x7b/
Name | Quant method | Size |
---|---|---|
piccolo-math-2x7b.Q2_K.gguf | Q2_K | 4.43GB |
piccolo-math-2x7b.IQ3_XS.gguf | IQ3_XS | 4.95GB |
piccolo-math-2x7b.IQ3_S.gguf | IQ3_S | 5.22GB |
piccolo-math-2x7b.Q3_K_S.gguf | Q3_K_S | 5.2GB |
piccolo-math-2x7b.IQ3_M.gguf | IQ3_M | 5.35GB |
piccolo-math-2x7b.Q3_K.gguf | Q3_K | 5.78GB |
piccolo-math-2x7b.Q3_K_M.gguf | Q3_K_M | 5.78GB |
piccolo-math-2x7b.Q3_K_L.gguf | Q3_K_L | 6.27GB |
piccolo-math-2x7b.IQ4_XS.gguf | IQ4_XS | 6.5GB |
piccolo-math-2x7b.Q4_0.gguf | Q4_0 | 6.78GB |
piccolo-math-2x7b.IQ4_NL.gguf | IQ4_NL | 6.85GB |
piccolo-math-2x7b.Q4_K_S.gguf | Q4_K_S | 6.84GB |
piccolo-math-2x7b.Q4_K.gguf | Q4_K | 7.25GB |
piccolo-math-2x7b.Q4_K_M.gguf | Q4_K_M | 7.25GB |
piccolo-math-2x7b.Q4_1.gguf | Q4_1 | 7.52GB |
piccolo-math-2x7b.Q5_0.gguf | Q5_0 | 8.26GB |
piccolo-math-2x7b.Q5_K_S.gguf | Q5_K_S | 8.26GB |
piccolo-math-2x7b.Q5_K.gguf | Q5_K | 8.51GB |
piccolo-math-2x7b.Q5_K_M.gguf | Q5_K_M | 8.51GB |
piccolo-math-2x7b.Q5_1.gguf | Q5_1 | 9.01GB |
piccolo-math-2x7b.Q6_K.gguf | Q6_K | 9.84GB |
piccolo-math-2x7b.Q8_0.gguf | Q8_0 | 12.75GB |
Original model description:
license: mit model-index: - name: piccolo-math-2x7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.11 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.27 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.86 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.13 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/piccolo-math-2x7b name: Open LLM Leaderboard
Piccolo-math-2x7b
In loving memory of my dog Klaus (Piccolo)
~ Piccolo (Italian): the little one ~
Code Example
Inference and Evaluation colab available here
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
model_id = "macadeliccc/piccolo-math-2x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,load_in_4bit=True)
prompt = "What is the best way to train Cane Corsos?"
print("Response:")
print(generate_response(prompt), "\n")
The model is capable of quality code, math, and logical reasoning. Try whatever questions you think of.
Evaluations
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
piccolo-math-2x7b | 43.89 | 74.98 | 63.96 | 44.99 | 56.96 |
EQ Bench
Benchmark Complete:
- 2024-01-24 00:00:40
- Time taken: 183.3 mins
- Prompt Format: Mistral
- Model: macadeliccc/piccolo-math-2x7b
- Score (v2): 70.74
- Parseable: 167.0
Batch completed Time taken: 183.3 mins
AGIEval
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 24.41 | ± | 2.70 |
acc_norm | 24.80 | ± | 2.72 | ||
agieval_logiqa_en | 0 | acc | 35.79 | ± | 1.88 |
acc_norm | 36.71 | ± | 1.89 | ||
agieval_lsat_ar | 0 | acc | 23.48 | ± | 2.80 |
acc_norm | 23.91 | ± | 2.82 | ||
agieval_lsat_lr | 0 | acc | 49.22 | ± | 2.22 |
acc_norm | 50.00 | ± | 2.22 | ||
agieval_lsat_rc | 0 | acc | 63.94 | ± | 2.93 |
acc_norm | 64.31 | ± | 2.93 | ||
agieval_sat_en | 0 | acc | 77.18 | ± | 2.93 |
acc_norm | 76.70 | ± | 2.95 | ||
agieval_sat_en_without_passage | 0 | acc | 45.15 | ± | 3.48 |
acc_norm | 44.66 | ± | 3.47 | ||
agieval_sat_math | 0 | acc | 33.64 | ± | 3.19 |
acc_norm | 30.00 | ± | 3.10 |
Average: 43.89%
GPT4All
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 61.86 | ± | 1.42 |
acc_norm | 62.88 | ± | 1.41 | ||
arc_easy | 0 | acc | 84.34 | ± | 0.75 |
acc_norm | 80.47 | ± | 0.81 | ||
boolq | 1 | acc | 86.88 | ± | 0.59 |
hellaswag | 0 | acc | 68.56 | ± | 0.46 |
acc_norm | 85.16 | ± | 0.35 | ||
openbookqa | 0 | acc | 37.00 | ± | 2.16 |
acc_norm | 47.80 | ± | 2.24 | ||
piqa | 0 | acc | 82.21 | ± | 0.89 |
acc_norm | 83.68 | ± | 0.86 | ||
winogrande | 0 | acc | 77.98 | ± | 1.16 |
Average: 74.98%
TruthfulQA
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 47.37 | ± | 1.75 |
mc2 | 63.96 | ± | 1.57 |
Average: 63.96%
Bigbench
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 55.26 | ± | 3.62 |
bigbench_date_understanding | 0 | multiple_choice_grade | 63.14 | ± | 2.51 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 42.64 | ± | 3.08 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 22.84 | ± | 2.22 |
exact_str_match | 3.34 | ± | 0.95 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 36.60 | ± | 2.16 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 25.57 | ± | 1.65 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 56.00 | ± | 2.87 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 42.40 | ± | 2.21 |
bigbench_navigate | 0 | multiple_choice_grade | 54.70 | ± | 1.57 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 62.90 | ± | 1.08 |
bigbench_ruin_names | 0 | multiple_choice_grade | 53.35 | ± | 2.36 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 24.35 | ± | 1.36 |
bigbench_snarks | 0 | multiple_choice_grade | 62.43 | ± | 3.61 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 70.28 | ± | 1.46 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 41.30 | ± | 1.56 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 22.32 | ± | 1.18 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 17.77 | ± | 0.91 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 56.00 | ± | 2.87 |
Average: 44.99%
Average score: 56.96%
Elapsed time: 01:51:53
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.32 |
AI2 Reasoning Challenge (25-Shot) | 69.11 |
HellaSwag (10-Shot) | 87.27 |
MMLU (5-Shot) | 63.69 |
TruthfulQA (0-shot) | 63.86 |
Winogrande (5-shot) | 79.87 |
GSM8k (5-shot) | 70.13 |
- Downloads last month
- 103