Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

multimaster-7b-v6 - GGUF

Original model description:

language: - en license: apache-2.0 library_name: transformers model-index: - name: multimaster-7b-v6 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.78 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/multimaster-7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/multimaster-7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/multimaster-7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.89 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/multimaster-7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 86.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/multimaster-7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.36 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/multimaster-7b-v6 name: Open LLM Leaderboard

Multi Master 7Bx5 v6

img

A quick multi-disciplinary moe model. This is part of a series of models built to test the gate tuning for mixtral style moe models.

Prompting

Prompt Template for alpaca style

### Instruction:

<prompt> (without the <>)

### Response:

Sample Code

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")

model = AutoModelForCausalLM.from_pretrained("ibivibiv/multimaster-7b-v6", torch_dtype="auto", device_config='auto')
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/multimaster-7b-v6")

inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\nA. Abraham Lincoln \nB. Chuck Norris\n### Response:\n", return_tensors="pt", return_attention_mask=False)

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)

Model Details

  • Trained by: ibivibiv
  • Library: HuggingFace Transformers
  • Model type: multimaster-7b is a lora tuned version of openchat/openchat-3.5-0106 with the adapter merged back into the main model
  • Language(s): English
  • Purpose: This model is a focus on multi-disciplinary model tuning

Benchmark Scores

coming soon

Citations

@misc{open-llm-leaderboard,
  author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
  title = {Open LLM Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{clark2018think,
      title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
      author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
      year={2018},
      eprint={1803.05457},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
@misc{zellers2019hellaswag,
      title={HellaSwag: Can a Machine Really Finish Your Sentence?},
      author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
      year={2019},
      eprint={1905.07830},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{hendrycks2021measuring,
      title={Measuring Massive Multitask Language Understanding},
      author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
      year={2021},
      eprint={2009.03300},
      archivePrefix={arXiv},
      primaryClass={cs.CY}
}
@misc{lin2022truthfulqa,
      title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
      author={Stephanie Lin and Jacob Hilton and Owain Evans},
      year={2022},
      eprint={2109.07958},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-1907-10641,
      title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
      author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
      year={2019},
      eprint={1907.10641},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-2110-14168,
      title={Training Verifiers to Solve Math Word Problems},
      author={Karl Cobbe and
                  Vineet Kosaraju and
                  Mohammad Bavarian and
                  Mark Chen and
                  Heewoo Jun and
                  Lukasz Kaiser and
                  Matthias Plappert and
                  Jerry Tworek and
                  Jacob Hilton and
                  Reiichiro Nakano and
                  Christopher Hesse and
                  John Schulman},
      year={2021},
      eprint={2110.14168},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.66
AI2 Reasoning Challenge (25-Shot) 72.78
HellaSwag (10-Shot) 88.77
MMLU (5-Shot) 64.74
TruthfulQA (0-shot) 70.89
Winogrande (5-shot) 86.42
GSM8k (5-shot) 70.36
Downloads last month
324
GGUF
Model size
35.4B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .