YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
delta-4B-super - GGUF
- Model creator: https://huggingface.co/frankenmerger/
- Original model: https://huggingface.co/frankenmerger/delta-4B-super/
Name | Quant method | Size |
---|---|---|
delta-4B-super.Q2_K.gguf | Q2_K | 1.7GB |
delta-4B-super.IQ3_XS.gguf | IQ3_XS | 1.84GB |
delta-4B-super.IQ3_S.gguf | IQ3_S | 1.92GB |
delta-4B-super.Q3_K_S.gguf | Q3_K_S | 1.92GB |
delta-4B-super.IQ3_M.gguf | IQ3_M | 2.04GB |
delta-4B-super.Q3_K.gguf | Q3_K | 2.21GB |
delta-4B-super.Q3_K_M.gguf | Q3_K_M | 2.21GB |
delta-4B-super.Q3_K_L.gguf | Q3_K_L | 2.45GB |
delta-4B-super.IQ4_XS.gguf | IQ4_XS | 2.38GB |
delta-4B-super.Q4_0.gguf | Q4_0 | 2.48GB |
delta-4B-super.IQ4_NL.gguf | IQ4_NL | 2.51GB |
delta-4B-super.Q4_K_S.gguf | Q4_K_S | 2.51GB |
delta-4B-super.Q4_K.gguf | Q4_K | 2.7GB |
delta-4B-super.Q4_K_M.gguf | Q4_K_M | 2.7GB |
delta-4B-super.Q4_1.gguf | Q4_1 | 2.75GB |
delta-4B-super.Q5_0.gguf | Q5_0 | 3.01GB |
delta-4B-super.Q5_K_S.gguf | Q5_K_S | 3.01GB |
delta-4B-super.Q5_K.gguf | Q5_K | 3.13GB |
delta-4B-super.Q5_K_M.gguf | Q5_K_M | 3.13GB |
delta-4B-super.Q5_1.gguf | Q5_1 | 3.01GB |
delta-4B-super.Q6_K.gguf | Q6_K | 3.57GB |
delta-4B-super.Q8_0.gguf | Q8_0 | 4.63GB |
Original model description:
widget: - text: Hello, My name is Junpei Iori, who are you? example_title: Identity - text: Describe Aurora Borealis example_title: Capabilities - text: Create a fastapi endpoint to retrieve the weather given a zip code. example_title: Coding pipeline_tag: text-generation license: apache-2.0 language: - en tags: - conversational
delta-4b-super is a frankenmerge of Phi-2-super.
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/Delta-4B-Base"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 217