YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
cosmo-3b-test - GGUF
- Model creator: https://huggingface.co/frankenmerger/
- Original model: https://huggingface.co/frankenmerger/cosmo-3b-test/
Name | Quant method | Size |
---|---|---|
cosmo-3b-test.Q2_K.gguf | Q2_K | 1.03GB |
cosmo-3b-test.IQ3_XS.gguf | IQ3_XS | 1.14GB |
cosmo-3b-test.IQ3_S.gguf | IQ3_S | 1.21GB |
cosmo-3b-test.Q3_K_S.gguf | Q3_K_S | 1.21GB |
cosmo-3b-test.IQ3_M.gguf | IQ3_M | 1.26GB |
cosmo-3b-test.Q3_K.gguf | Q3_K | 1.34GB |
cosmo-3b-test.Q3_K_M.gguf | Q3_K_M | 1.34GB |
cosmo-3b-test.Q3_K_L.gguf | Q3_K_L | 1.46GB |
cosmo-3b-test.IQ4_XS.gguf | IQ4_XS | 1.49GB |
cosmo-3b-test.Q4_0.gguf | Q4_0 | 1.56GB |
cosmo-3b-test.IQ4_NL.gguf | IQ4_NL | 1.57GB |
cosmo-3b-test.Q4_K_S.gguf | Q4_K_S | 1.57GB |
cosmo-3b-test.Q4_K.gguf | Q4_K | 1.67GB |
cosmo-3b-test.Q4_K_M.gguf | Q4_K_M | 1.67GB |
cosmo-3b-test.Q4_1.gguf | Q4_1 | 1.73GB |
cosmo-3b-test.Q5_0.gguf | Q5_0 | 1.9GB |
cosmo-3b-test.Q5_K_S.gguf | Q5_K_S | 1.9GB |
cosmo-3b-test.Q5_K.gguf | Q5_K | 1.95GB |
cosmo-3b-test.Q5_K_M.gguf | Q5_K_M | 1.95GB |
cosmo-3b-test.Q5_1.gguf | Q5_1 | 2.07GB |
cosmo-3b-test.Q6_K.gguf | Q6_K | 2.25GB |
cosmo-3b-test.Q8_0.gguf | Q8_0 | 2.92GB |
Original model description:
widget:
- text: 'Artificial Intelligence is'
example_title: Textbook
group: Completion
- text: ' [INST] How to take care of exotic cars? [/INST] '
example_title: Wikihow
group: Completion
- text: ' [INST] Generate a story about a Dark Knight [/INST] '
example_title: Story
group: Completion
inference:
parameters:
temperature: 0.6
top_p: 0.9
top_k: 30
repetition_penalty: 1.2
license: apache-2.0
language:
- en
pipeline_tag: text-generation
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/frankencosmo-test"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 115