YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
Macaroni-v2-7b - GGUF
- Model creator: https://huggingface.co/andrijdavid/
- Original model: https://huggingface.co/andrijdavid/Macaroni-v2-7b/
Name | Quant method | Size |
---|---|---|
Macaroni-v2-7b.Q2_K.gguf | Q2_K | 2.53GB |
Macaroni-v2-7b.IQ3_XS.gguf | IQ3_XS | 2.81GB |
Macaroni-v2-7b.IQ3_S.gguf | IQ3_S | 2.96GB |
Macaroni-v2-7b.Q3_K_S.gguf | Q3_K_S | 2.95GB |
Macaroni-v2-7b.IQ3_M.gguf | IQ3_M | 3.06GB |
Macaroni-v2-7b.Q3_K.gguf | Q3_K | 3.28GB |
Macaroni-v2-7b.Q3_K_M.gguf | Q3_K_M | 3.28GB |
Macaroni-v2-7b.Q3_K_L.gguf | Q3_K_L | 3.56GB |
Macaroni-v2-7b.IQ4_XS.gguf | IQ4_XS | 3.67GB |
Macaroni-v2-7b.Q4_0.gguf | Q4_0 | 3.83GB |
Macaroni-v2-7b.IQ4_NL.gguf | IQ4_NL | 3.87GB |
Macaroni-v2-7b.Q4_K_S.gguf | Q4_K_S | 3.86GB |
Macaroni-v2-7b.Q4_K.gguf | Q4_K | 4.07GB |
Macaroni-v2-7b.Q4_K_M.gguf | Q4_K_M | 4.07GB |
Macaroni-v2-7b.Q4_1.gguf | Q4_1 | 4.24GB |
Macaroni-v2-7b.Q5_0.gguf | Q5_0 | 4.65GB |
Macaroni-v2-7b.Q5_K_S.gguf | Q5_K_S | 4.65GB |
Macaroni-v2-7b.Q5_K.gguf | Q5_K | 4.78GB |
Macaroni-v2-7b.Q5_K_M.gguf | Q5_K_M | 4.78GB |
Macaroni-v2-7b.Q5_1.gguf | Q5_1 | 5.07GB |
Macaroni-v2-7b.Q6_K.gguf | Q6_K | 5.53GB |
Macaroni-v2-7b.Q8_0.gguf | Q8_0 | 7.17GB |
Original model description:
base_model: - flemmingmiguel/MBX-7B-v3 - mlabonne/OmniBeagle-7B - mistralai/Mistral-7B-v0.1 - vanillaOVO/supermario_v4 tags: - mergekit - merge license: apache-2.0 language: - en
Macaroni V2 7B
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using mistralai/Mistral-7B-v0.1 as a base.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: flemmingmiguel/MBX-7B-v3
parameters:
density: 0.7
weight: 0.5
- model: vanillaOVO/supermario_v4
parameters:
density: 0.7
weight: 0.3
- model: mlabonne/OmniBeagle-7B
parameters:
density: 0.5
weight: 0.6
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
normalize: true
dtype: float16
- Downloads last month
- 38