File size: 2,488 Bytes
1f89418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
zephyr-7b-sft-full-SPIN-iter0 - bnb 8bits
- Model creator: https://huggingface.co/UCLA-AGI/
- Original model: https://huggingface.co/UCLA-AGI/zephyr-7b-sft-full-SPIN-iter0/
Original model description:
---
license: mit
datasets:
- UCLA-AGI/SPIN_iter0
language:
- en
pipeline_tag: text-generation
---
Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models (https://arxiv.org/abs/2401.01335)
# zephyr-7b-sft-full-spin-iter0
This model is a self-play fine-tuned model at iteration 0 from [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) using synthetic data based on on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset.
## Model Details
### Model Description
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: MIT
- Finetuned from model: alignment-handbook/zephyr-7b-sft-full (based on mistralai/Mistral-7B-v0.1)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_UCLA-AGI__test0)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 62.37 |
| ARC (25-shot) | 63.65 |
| HellaSwag (10-shot) | 84.44 |
| MMLU (5-shot) | 61.01 |
| TruthfulQA (0-shot) | 50.48 |
| Winogrande (5-shot) | 77.98 |
| GSM8K (5-shot) | 36.69 |
## Citation
```
@misc{chen2024selfplay,
title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models},
author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
year={2024},
eprint={2401.01335},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|