Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

megatron_v1 - GGUF

Name Quant method Size
megatron_v1.Q2_K.gguf Q2_K 4.43GB
megatron_v1.IQ3_XS.gguf IQ3_XS 4.95GB
megatron_v1.IQ3_S.gguf IQ3_S 5.22GB
megatron_v1.Q3_K_S.gguf Q3_K_S 5.2GB
megatron_v1.IQ3_M.gguf IQ3_M 5.35GB
megatron_v1.Q3_K.gguf Q3_K 5.78GB
megatron_v1.Q3_K_M.gguf Q3_K_M 5.78GB
megatron_v1.Q3_K_L.gguf Q3_K_L 6.27GB
megatron_v1.IQ4_XS.gguf IQ4_XS 6.5GB
megatron_v1.Q4_0.gguf Q4_0 6.78GB
megatron_v1.IQ4_NL.gguf IQ4_NL 6.85GB
megatron_v1.Q4_K_S.gguf Q4_K_S 6.84GB
megatron_v1.Q4_K.gguf Q4_K 7.25GB
megatron_v1.Q4_K_M.gguf Q4_K_M 7.25GB
megatron_v1.Q4_1.gguf Q4_1 7.52GB
megatron_v1.Q5_0.gguf Q5_0 8.26GB
megatron_v1.Q5_K_S.gguf Q5_K_S 8.26GB
megatron_v1.Q5_K.gguf Q5_K 8.51GB
megatron_v1.Q5_K_M.gguf Q5_K_M 8.51GB
megatron_v1.Q5_1.gguf Q5_1 9.01GB
megatron_v1.Q6_K.gguf Q6_K 9.84GB
megatron_v1.Q8_0.gguf Q8_0 12.75GB

Original model description:

license: apache-2.0 tags: - moe - merge model-index: - name: megatron_v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.8 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.02 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.32 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 57.01 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Eurdem/megatron_v1 name: Open LLM Leaderboard

megatron_v1

megatron_v1 is a Mixure of Experts (MoE) made of mistral models.

πŸ’» Usage

from transformers import AutoTokenizer
import transformers
import torch

model = "Eurdem/megatron_v1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 68.82
AI2 Reasoning Challenge (25-Shot) 65.96
HellaSwag (10-Shot) 84.80
MMLU (5-Shot) 65.02
TruthfulQA (0-shot) 60.32
Winogrande (5-shot) 79.79
GSM8k (5-shot) 57.01
Downloads last month
100
GGUF
Model size
12.9B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .