Edit model card

Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage


from transformers import AutoTokenizer, pipeline
import torch

model = "Rhaps360/opt125m-ins-ft"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cpu"
)

messages = [
    {"role": "user", 
     "content": "you are a poet who can write poem on machine learning", 
     "text":"write a poem on machine learning"}
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(
    prompt,
    max_new_tokens=200,
    do_sample=True,
    temperature=0.00001,
    top_k=50,
    top_p=0.95,
    repetition_penalty=20.0
)
print(outputs[0]["generated_text"][len(prompt):])
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.